Разделы сайта
Интересно
О том, о сём
Хвалите чаще себя

Хвалите чаще себя

Как правило, мы не забываем сказать окружающим слова благодарности за добрые дела и услуги, которые они делают для нас. А часто ли вы хвалите и благодарите самого себя? Обычно это происходит очень редко, а бывает, что мы только привыкаем ругать себя и винить во всём.

Лечебные свойства кубика льда

Лечебные свойства кубика льда

У льда есть множество полезных функций. Например, при помощи кубика льда может остановить кровотечение, снять воспаление. Также всем известно, что самое популярное применение льда – в косметологии. А массаж льдом способен избавить Вас от отеков. Как же еще можно применять «чудо» - лед? Об этом и поговорим в нашей статье.

Валенки и угги - ухаживаем правильно

Валенки и угги - ухаживаем правильно

Такая обувь, как валенки и угги, требует специального ухода. Заботясь о них правильно, Вы сможете продлить «жизнь» любимой обуви.

Поведение в обществе

Поведение в обществе

Прежде всего, необходимо воспитать в себе внимательное отношение к людям. Без этого человек на каждом шагу ставит в неловкое положение и себя, и окружающих.

Как вести себя за столом

Как вести себя за столом

Культура питания имеет очень важное значение для здоровья человека. Есть, когда придётся и что попало – это своеобразная распущенность и непростительная небрежность.

Мельхиор температура плавления в градусах


Температура плавления металлов, сплавов, фосфора и кремния, в °C и °F

Алюминий (Al) / Aluminum 660 1220
Алюминиевые сплавы / Aluminum Alloy 463 - 671 865 - 1240
Баббит = Babbitt 249 480
Бериллий (Be) = Beryllium 1285 2345
Бронза алюминиевая = Aluminum Bronze 1027 - 1038 1881 - 1900
Бронза бериллиевая, бериллиевая бронза = Beryllium Copper 865 - 955 1587 - 1750
Бронза марганцовистая = Manganese bronze 865 - 890 1590 - 1630
Ванадий (V), Vanadium 1900 3450
Висмут (Bi) = Bismuth 271.4 520.5
Вольфрам (W), Tungsten 3400 6150
Железо ковкое (Fe)  = Carbon Steel 1482 - 1593 2700 - 2900
Золото (Au) чистое 999 пробы  100% золото = Gold 24K Pure 1063 1945
Инконель, жаропрочный никелехромовый сплав = Inconel 1390 - 1425 2540 - 2600
Инколой, жаропрочный никелехромовый сплав = Incoloy 1390 - 1425 2540 - 2600
Иридий (Ir), Iridium 2450 4440
Кадмий (Cd) = Cadmium 321 610
Калий (K) = Potassium 63.3 146
Кобальт (Co) = Cobalt 1495 2723
Кремний (Si) = Silicon 1411 2572
Латунь желтая = Brass, Yellow 905-932 1660-1710
Латунь морская = Морская латунь (29-30% Zn, 70% Cu-1% Sn и 0,02-0,05% As) = Admiralty Brass 900 - 940 1650 - 1720
Латунь красная = Brass, Red 990 - 1025 1810 - 1880
Медь (Cu) = Copper 1084 1983
Мельхиор, купроникель = Cupronickel 1170 - 1240 2140 - 2260
Магний (Mg), Magnesium 650 1200
Магниевые сплавы = Magnesium Alloy 349 - 649 660 - 1200
Марганец (Mn), Manganese 1244 2271
Молибден (Mo), Molybdenum 2620 4750
Монель (до 67 % никеля и до 38 % меди) = Monel 1300 - 1350 2370 - 2460
Натрий (Na) = Sodium 97.83 208
Никель (Ni), Nickel 1453 2647
Ниобий (Nb), Niobium (Columbium) 2470 4473
Олово (Sn), Tin 232 449.4
Осмий (Os), Osmium 3025 5477
Палладий (Pd), Palladium 1555 2831
Платина (Pt),Platinum 1770 3220
Плутоний (Pu), Plutonium 640 1180
Рений (Re), Rhenium 3186 5767
Родий (Rh) = Rhodium 1965 3569
Ртуть (Hg) = Mercury -38.86 -37.95
Рутений (Ru) = Ruthenium 2482 4500
Селен (Se) = Selenium 217 423
Cеребро 900 пробы = Coin Silver 879 1615
Серебро (Ar) чистое = Pure Silver 961 1761
Cеребро 925 пробы = Sterling Silver 893 1640
Свинец (Pb), Lead 327.5 621
Сталь углеродистая = Carbon Steel 1425 - 1540 2600 - 2800
Сталь нержавеющая = Stainless Steel 1510 2750
Сурьма (Sb) = Antimony 630 1170
Тантал (Ta) = Tantalum 2980 5400
Титан (Ti), Titanium 1670 3040
Торий (Th), Thorium 1750 3180
Уран (U), Uranium 1132 2070
Фосфор (P), Phosphorus 44 111
Хастелой С, Hastelloy C (54,5-59,5% Ni; 15-19% Mo; 0,04-0,15% C; 4-7% Fe; 13-16% Cr; 3,5-5,5% W) 1320 - 1350 2410 - 2460
Хром (Cr) = Chromium 1860 3380
Цинк (Zn), Zinc 419.5 787
Цирконий (Zr), Zirconium 1854 3369
Чугун серый = Grey Cast Iron 1127 - 1204 2060 - 2200
Чугун Ковкий, Ductile Iron 1149 2100

Теплопроводность сплавов меди. Температура плавления латуни и бронзы

Теплопроводность латуни и бронзы

В таблице приведены значения теплопроводности латуни, бронзы, а также медно-никелевых сплавов (константана, копели, манганина и др.) в зависимости от температуры — в интервале от 4 до 1273 К.

Теплопроводность латуни, бронзы и других сплавов на основе меди при нагревании увеличивается. По данным таблицы, наибольшей теплопроводностью из рассмотренных сплавов при комнатной температуре обладает латунь Л96. Ее теплопроводность при температуре 300 К (27°С) равна 244 Вт/(м·град).

Также к медным сплавам с высокой теплопроводностью можно отнести: латунь ЛС59-1, томпак Л96 и Л90, томпак оловянистый ЛТО90-1, томпак прокатный РТ-90. Кроме того, теплопроводность латуни в основном выше теплопроводности бронзы. Следует отметить, что к бронзам с высокой теплопроводностью относятся: фосфористая, хромистая и бериллиевая бронзы, а также бронза БрА5.

Медным сплавом с наименьшей теплопроводностью является марганцовистая бронза — ее коэффициент теплопроводности при температуре 27°С равен 9,6 Вт/(м·град).

Теплопроводность медных сплавов всегда ниже теплопроводности чистой меди при прочих равных условиях. Кроме того, теплопроводность медно-никелевых сплавов имеет особенно низкое значение. Самым теплопроводным из них при комнатной температуре является мельхиор МНЖМц 30-0,8-1 с теплопроводностью 30 Вт/(м·град). 

Таблица теплопроводности латуни, бронзы и медно-никелевых сплавов
Сплав Температура, К Теплопроводность, Вт/(м·град)
Медно-никелевые сплавы
Бериллиевая медь 300 111
Константан зарубежного производства 4…10…20…40…80…300 0,8…3,5…8,8…13…18…23
Константан МНМц40-1,5 273…473…573…673 21…26…31…37
Копель МНМц43-0,5 473…1273 25…58
Манганин зарубежного производства 4…10…40…80…150…300 0,5…2…7…13…16…22
Манганин МНМц 3-12 273…573 22…36
Мельхиор МНЖМц 30-0,8-1 300 30
Нейзильбер 300…400…500…600…700 23…31…39…45…49
Латунь
Автоматная латунь UNS C36000 300 115
Л62 300…600…900 110…160…200
Л68 латунь деформированная 80…150…300…900 71…84…110…120
Л80 полутомпак 300…600…900 110…120…140
Л90 273…373…473…573…673…773…873 114…126…142…157…175…188…203
Л96 томпак волоченый 300…400…500…600…700…800 244…245…246…250…255…260
ЛАН59-3-2 латунь алюминиево-никелевая 300…600…900 84…120…150
ЛМЦ58-2 латунь марганцовистая 300…600…900 70…100…120
ЛО62-1 оловянистая 300 99
ЛО70-1 оловянистая 300…600 92…140
ЛС59-1 латунь отожженая 4…10…20…40…80…300 3,4…10…19…34…54…120
ЛС59-1В латунь свинцовистая 300…600…900 110…140…180
ЛТО90-1 томпак оловянистый 300…400…500…600…700…800…900 124…141…157…174…194…209…222
Бронза
БрА5 300…400…500…600…700…800…900 105…114…124…133…141…148…153
БрА7 300…400…500…600…700…800…900 97…105…114…122…129…135…141
БрАЖМЦ10-3-1,5 300…600…800 59…77…84
БрАЖН10-4-4 300…400…500 75…87…97
БрАЖН11-6-6 300…400…500…600…700…800 64…71…77…82…87…94
БрБ2, отожженая при 573К 4…10…20…40…80 2,3…5…11…21…37
БрКд 293 340
БрКМЦ3-1 300…400…500…600…700 42…50…55…54…54
БрМЦ-5 300…400…500…600…700 94…103…112…122…127
БрМЦС8-20 300…400…500…600…700…800…900 32…37…43…46…49…51…53
БрО10 300…400…500 48…52…56
БрОС10-10 300…400…600…800 45…51…61…67
БрОС5-25 300…400…500…600…700…800…900 58…64…71…77…80…83…85
БрОФ10-1 300…400…500…600…700…800…900 34…38…43…46…49…51…52
БрОЦ10-2 300…400…500…600…700…800…900 55…56…63…68…72…75…77
БрОЦ4-3 300…400…500…600…700…800…900 84…93…101…108…114…120…124
БрОЦ6-6-3 300…400…500…600…700…800…900 64…71…77…82…87…91…93
БрОЦ8-4 300…400…500…600…700…800…900 68…77…83…88…93…96…100
Бронза алюминиевая 300 56
Бронза бериллиевая состаренная 20…80…150…300 18…65…110…170
Бронза марганцовистая 300 9,6
Бронза свинцовистая производственная 300 26
Бронза фосфористая 10% 300 50
Бронза фосфористая отожженая 20…80…150…300 6…20…77…190
Бронза хромистая UNS C18200 300 171

Примечание: Температура в таблице дана в градусах Кельвина!

Температура плавления латуни

Температура плавления латуни рассмотренных марок изменяется в интервале от 865 до 1055 °С. Наиболее легкоплавкой является марганцовистая латунь ЛМц58-2 с температурой плавления 865°С. Также к легкоплавким латуням можно отнести: Л59, Л62, ЛАН59-3-2, ЛКС65-1,5-3 и другие.

Наибольшую температуру плавления имеет латунь Л96 (1055°С). Среди тугоплавких латуней по данным таблицы можно также выделить: латунь Л90, ЛА85-0,5, томпак оловянистый ЛТО90-1.

Температура плавления латуни
Латунь t, °С Латунь t, °С
Л59 885 ЛМц55-3-1 930
Л62 898 ЛМц58-2 латунь марганцовистая 865
Л63 900 ЛМцА57-3-1 920
Л66 905 ЛМцЖ52-4-1 940
Л68 латунь деформированная 909 ЛМцОС58-2-2-2 900
Л70 915 ЛМцС58-2-2 900
Л75 980 ЛН56-3 890
Л80 полутомпак 965 ЛН65-5 960
Л85 990 ЛО59-1 885
Л90 1025 ЛО60-1 885
Л96 томпак волоченый 1055 ЛО62-1 оловянистая 885
ЛА67-2,5 995 ЛО65-1-2 920
ЛА77-2 930 ЛО70-1 оловянистая 890
ЛА85-0,5 1020 ЛО74-3 885
ЛАЖ60-1-1 904 ЛО90-1 995
ЛАЖМц66-6-3-2 899 ЛС59-1 900
ЛАН59-3-2 латунь алюминиево-никелевая 892 ЛС59-1В латунь свинцовистая 900
ЛАНКМц75-2-2,5-0,5-0,5 940 ЛС60-1 900
ЛЖМц59-1-1 885 ЛС63-3 885
ЛК80-3 900 ЛС64-2 910
ЛКС65-1,5-3 870 ЛС74-3 965
ЛКС80-3-3 900 ЛТО90-1 томпак оловянистый 1015

Температура плавления бронзы

Температура плавления бронзы находится в диапазоне от 854 до 1135°С. Наибольшей температурой плавления обладает бронза АЖН11-6-6 — она плавится при температуре 1408 К (1135°С). Температура плавления этой бронзы даже выше, чем температура плавления меди, которая составляет 1084,6°С.

К бронзам с невысокой температурой плавления можно отнести: БрОЦ8-4, БрБ2, БрМЦС8-20, БрСН60-2,5 и подобные.

Температура плавления бронзы
Бронза t, °С Бронза t, °С
БрА5 1056 БрОС8-12 940
БрА7 1040 БрОСН10-2-3 1000
БрА10 1040 БрОФ10-1 934
БрАЖ9-4 1040 БрОФ4-0.25 1060
БрАЖМЦ10-3-1,5 1045 БрОЦ10-2 1015
БрАЖН10-4-4 1084 БрОЦ4-3 1045
БрАЖН11-6-6 1135 БрОЦ6-6-3 967
БрАЖС7-1,5-1,5 1020 БрОЦ8-4 854
БрАМЦ9-2 1060 БрОЦС3,5-6-5 980
БрБ2 864 БрОЦС4-4-17 920
БрБ2,5 930 БрОЦС4-4-2,5 887
БрКМЦ3-1 970 БрОЦС5-5-5 955
БрКН1-3 1050 БрОЦС8-4-3 1015
БрКС3-4 1020 БрОЦС3-12-5 1000
БрКЦ4-4 1000 БрОЦСН3-7-5-1 990
БрМГ0,3 1076 БрС30 975
БрМЦ5 1007 БрСН60-2,5 885
БрМЦС8-20 885 БрСУН7-2 950
БрО10 1020 БрХ0,5 1073
БрОС10-10 925 БрЦр0,4 965
БрОС10-5 980 Кадмиевая 1040
БрОС12-7 930 Серебряная 1082
БрОС5-25 899 Сплав ХОТ 1075

Примечание: температура плавления и кипения других распространенных металлов приведена в этой таблице.

Источники:

  1. Физические величины. Справочник. Под ред. И.С. Григорьева, Е.З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.
  2. Чиркин В.С. Теплофизические свойства материалов ядерной техники. М.: Атомиздат, 1967 — 474 с.

Температура плавления меди и ее сплавов, график, характеристики

Медные изделия отличаются хорошей прочностью, пластичностью, высокой электропроводностью, устойчивостью к коррозии и химически активным веществам. Для изготовления объектов используется медная руда, которая на заводах обогащается и переплавляется в однородные бруски, прутья или слитки. Чтобы изготовить какое-либо медное изделие, материал помещают в термостойкую форму, доводят до температуры плавления, а потом прекращают нагрев, что приводит к застыванию вещества. Но какая температура плавления меди? Можно ли расплавить медные заготовки в домашних условиях — или для этого требуются специальные печи? О каких правилах техники безопасности нужно знать?

Общие сведения

Температурой плавления называют температуру, при которой твердое вещество переходит в жидкость. Медь расплавляется при температуре 1083 градусов, поэтому этот металл относят к категории тугоплавких. При снижении этой температуры металл может вновь принять твердую форму. Плавят медь на заводах, хотя эту процедуру можно провести в домашних условиях. На химическом уровне расплавление возникает за счет деструкции кристаллической решетки, которая формирует твердую структуру вещества. Атомы меди в кристаллической решетке всегда находятся в непрерывном движении.

Однако их взаимное притяжение и отталкивание происходит сбалансировано, поэтому атомы сохраняют исходное положение в течение длительного времени. В случае повышения температуры атомы меди получают дополнительную энергию, что заставляет двигаться их более интенсивно. При небольшом повышении дополнительная энергия «гасится» за счет сбалансированного движения атомов в решетке. Однако при достижении определенной температуры нагрева количество энергии становится избыточным, а кристаллическая решетка начинает разрушаться.

В этот момент и происходит расплавление вещества. Взаимное притяжение атомов частично сохраняется, поэтому вещество принимает жидкую форму. Однако в случае дальнейшего нагрева энергия атомов усиливается еще сильнее, что может привести к окончательному разрыву связи атомов друг с другом. Эту точку перехода называют испарением (жидкость трансформируется в пар). В случае снижения температуры медного пара может переходить обратно в жидкость, а потом — в твердое состояние.

Температура плавления меди

При нормальных условиях температура плавления меди составляет 1083 градусов по шкале Цельсия. А во время нагрева происходит ряд превращений на молекулярном уровне, что приводит к изменению свойств вещества. Чтобы разобраться во всех этих изменениях, нужно рассмотреть основные этапы нагрева и расплавления медного слитка. Примерный график плавления меди выглядит так:

  1. В нормальном состоянии при температуре от 0 до 100 градусов внутри меди образуется прочная кристаллическая решетка, которая обеспечивает материалу большую устойчивость, упругость, химическую инертность. Решетка является достаточно прочной, однако в случае сильной деформации может происходить пространственное изменение положения атомов в решетке. Этим объясняется ковкость и пластичность медных изделий, которые могут сгибаться и деформироваться (скажем, при кузнечной обработке или в случае пресса).
  2. В нормальном состоянии при температуре от 0 до 100 градусов на поверхности медного изделия также образуется тонкая оксидная пленка. Наличие такой пленки является большим плюсом для изделия, поскольку она выполняет множество важных функций — минимизирует контакт с внешними веществами, защищает материал от коррозии, немного увеличивает прочность. В случае охлаждения материала ниже температуры 0 градусов сама медь сохраняет все свои физические свойства. Однако оксидная пленка при охлаждении становится менее упругой и плотной, изделие становится менее твердым (хотя с практической точки зрения это снижение прочности практически незаметно).
  3. При нагреве материала выше температуры 100 градусов происходит постепенная деструкция оксидной пленки на поверхности металла. Это повышает химическую активность материала, что делает его восприимчивым к воздействию веществ во внешней среде. Одновременно с этим при нагреве происходит насыщение энергией атомов меди, что делает материал более пластичным. По этой причине ковку медных изделий выполняют именно после нагрева, поскольку без нагрева для изменения формы изделия понадобится большое количество физических усилий (это может быть мускульная сила кузнеца, расходы электроэнергии для запуска электрического пресса и так далее).
  4. При достижении температуры 1083 градусов кристаллическая медная решетка начинается постепенно разрушаться, что превращает твердую медь в жидкую. На физическом уровне происходит следующее — из-за избытка энергии атомы начинают двигаться в кристаллической решетке более интенсивно и хаотично, что приводит к частому столкновению атомов между собой. В конечном счете это разрушает решетку, хотя за счет взаимного столкновения и притяжения атомы не разлетаются в разные стороны. На физическом уровне такая структура материала соответствует жидкости (то есть такому состоянию вещества, при котором атомы находятся в относительно свободном движении, но не разлетаются в разные стороны подобно газу).
  5. При остывании медной жидкости ниже температуры 1083 градусов происходит постепенная кристаллизация вещества. Медь вновь обретает твердую форму (чем ниже температура, тем интенсивней происходит затвердение вещества). Однако при необходимости жидкую медь можно и дальше нагревать (на химическом уровне будет происходить дальнейшее насыщение атомов энергией). При достижении температуры 2595 градусов по Цельсию жидкость начнет закипать, а медь начнет принимать газообразную форму. На практике длительное удержание вещества в газообразной форме проблематично — при контакте с атмосферным воздухом вещество будет быстро остывать, обратно превращаясь в жидкость. Чтобы обойти это ограничение, используются разные технологии. Оптимальная — нагрев вещества в тугоплавкой камере с поддержанием стабильной температуры выше критической точки (то есть выше температуры 2595 градусов). В таком случае температура среды будет высокой, а остывание вещества происходить не будет.

Чтобы расплавить/испарить медное изделие с помощью высокоточного нагревательного прибора, нагревать рекомендуется до чуть более высокой температуры. Скажем, в случае расплавления нагревать изделие следует до температуры 1100-1200 градусов (а не 1083 градусов). С практической точки зрения объясняется это просто — нагрев вещества происходит неравномерно, поэтому некоторые фрагменты медного изделия будут долго держать свою форму, тогда как другие — быстро расплавятся. К тому же вещество будет постоянно остывать, что может привести к кристаллизации отдельных фрагментов расплава.

Плавление сплавов на основе меди

На практике медь используют не только в качестве чистого вещества, но и в виде различных сплавов. Примеры таких сплавов — бронза, латунь, мельхиор и другие. Так как сплавы являются многокомпонентными веществами, то их плавление происходит по другому принципу. Рассмотрим примерный алгоритм плавления медных сплавов на примере латуни:

  1. При температуре до 100 градусов Цельсия кристаллическая решетка является устойчивой и однородной. В случае удара происходит деформация материала. На поверхности материала имеется тонкая оксидная пленка, которая защищает изделие от воздействия воды, атмосферного воздуха, химически активных веществ.
  2. При нагреве латуни до 100 градусов внешняя пленка постепенно плавится, что делает вещество менее прочным. Также из-за повреждения защитной пленки увеличивается химическая активность материала (то есть он начинает более активно вступать в реакцию с водой, воздухом, химическими веществами). Кристаллическая решетка устойчива к небольшому нагреву, поэтому материал сохраняет свою форму.
  3. Температура 880 градусов — это точка солидуса. При достижении этой температуры начинается расплавление самых легкоплавких элементов, входящих в состав сплава. Это приводит к частичному переходу твердого вещества в жидкость. На химическом уровне при достижении точки солидуса происходит частичное разрушение кристаллической решетки вещества, однако у более тугоплавких фракций решетка сохраняется.
  4. Температура 950 градусов — это точка ликвидуса. При достижении этой отметки плавятся самые тугоплавкие фракции, которые сохраняют свою твердость при более низких температурах. В результате на химическом уровне материал полностью становится жидким, поскольку полностью разрушается кристаллическая решетка у всех компонентов, входящих в состав латуни.

Как расплавить медь в домашних условиях?

Обычно медь и сплавы на ее основе плавят в специальных печах, где происходит не только расплавление материала, но и формовка новых деталей. Однако при желании медные изделия можно расплавить и в домашних условиях. Температура плавления меди в домашних условиях будет стандартной — 1083 градусов. Опытные металлурги рекомендуют нагревать вещество с небольшим запасом, чтобы минимизировать теплопотери и не допустить повторной кристаллизации вещества при его охлаждении. Во время домашнего расплавления необходимо соблюдать правила техники безопасности. Ниже мы рассмотрим эти правила, а потом узнаем, как именно нужно проводить домашнюю расплавку медных изделий.

Оборудование и правила техники безопасности

Для расплавления Вам понадобится купить или собрать специальное оборудование. В качестве исходного вещества подойдет чистая медь в слитках или брусках. Также для переплавки можно использовать различные детали и домашнюю утварь, содержащие большое количество меди. Это могут быть декоративные изделия, запчасти авто, очищенные провода и другие. Перед переплавкой проверьте удельное содержание меди (обычно ставится штамп с нужной информацией). Для нагрева объектов понадобится муфельная печь с регулятором температуры.

Для расплавления слитков или изделий понадобится не только печь, но и посуда-тигель, в которую будет помещаться медь. При выборе тигля отдайте свое предпочтение посуде, выполненной из тугоплавкой керамики или огнеупорной глины. Эти материалы не трескаются и не деформируются при большой нагреве. Из керамики или огнеупорной глины Вам также нужно выполнить форму, в которую будет заливаться расплавленная медь. Помимо этого Вам понадобится и ряд вспомогательных элементов — металлургические щипцы и крюк для работы с тиглем, древесный уголь (если Вы используете обычную печь), бытовой пылесос для удаления мусора с металлургической площадки и так далее.

Также стоит не забывать о правилах техники безопасности:

  • Все работы рекомендуется проводить на улице либо в хорошо проветриваемом большом помещении с нормальным уровнем влажности воздуха. Это может быть гараж, пристройка к дому, мастерские.
  • Для металлургических работ человеку понадобится купить защитную одежду, которая будет защищать его тело от маленьких капель расплавленной меди и термического воздействия высоких температур. Защитная одежда должна покрывать не только туловище, но и руки, голову и ноги.
  • В случае утечки металла из активной зоны нужно выключить печь, чтобы остановить процедуру переплавки. «Сбежавший» металл необходимо потушить, однако учтите — вода для этих целей не подходит. В случае тушения раскаленного металла водой жидкость может начать распадаться на молекулы кислорода и водорода, что может спровоцировать взрыв (молекулярный водород чрезвычайно взрывоопасен). Для тушения расплавленного металла следует использовать асбестовое одеяло либо сухую кальцинированную соду или хлорид натрия.

Алгоритм расплавления медных изделий

Переплавку медных изделий следует делать так:

  1. Возьмите медные изделия или слитки и поместите в тигель. Тигель с расходными материалами поместите в печь. Начните постепенно нагревать материал: сперва выставите температуру 100 градусов, потом — 200 и так далее. Доведите температуру до 1090-1150 градусов (медь плавится при температуре 1083 градусов, однако нужно брать температуру с небольшим запасом).
  2. Когда материал расплавится, достаньте его из печи с помощью металлургических щипцов. На поверхности смеси вы увидите остатки оксидной пленки. С помощью крюка ее нужно сдвинуть к одной из стенок тигля, чтобы она не попала в форму. После удаления пленки аккуратно перелейте расплавленную медь в форму (переливать жидкость нужно тонкой струей, чтобы не допустить утечку или распрыскивания металла).
  3. Выключите муфельную печь, накройте форму огнеупорной крышкой и дождитесь полного остывания формы вместе с расплавленным металлом. При желании Вы можете поставить форму обратно в печь, чтобы минимизировать контакт металла с атмосферным воздухом (однако перед помещением формы убедитесь, что печь выключена). После полного остывания и затвердения металла достаньте переплавленную запчасть из формы.При необходимости выполните финальную полировку или шлифовку.

Заключение

Твердая медь переходит в жидкое состояние при температуре 1083 градуса по Цельсию. Расплавление представляет собой сложный химический процесс, при котором разрушается твердая кристаллическая решетка вещества, что приводит к изменению его формы. Для повышения температуры меди нужно выполнить ее нагрев. На заводах и фабриках для этого используют специальные камеры и печи. Выполнить нагрев вещества можно в домашних условиях — для этого нужно собрать или приобрести мощную печь, которая может нагревать вещества до температуры выше 1100 градусов. Нагревать медь нужно с запасом, что связано с теплопотерями и особенностями процедуры нагрева.

Для переплавки меди в домашних условиях помимо печи нужно подготовить дополнительное оборудование — тигель, металлургические щипцы, крюк, керамическую форму и так далее. Переплавка выполняется просто — с помощью печи медь нагревается до 1083 градусов, а потом она переливается в форму для застывания. Расплавление медных сплавов отличается от расплавления чистой меди. Сплавы характеризуются «плавающей» температурой плавления. Например, латунь плавится при температуре от 880 до 950 градусов в зависимости от концентрации легирующих элементов. Металлурги рекомендуют плавить латуниевый сплав при температуре 950 градусов (точка ликвидуса).

Используемая литература и источники:

  • Лидин Р. А., Молочко В. А., Андреева Л. Л. Химические свойства неорганических веществ. — «Химия», 2000.
  • Максимов М. М., Горнунг М. Б. Очерк о первой меди. — М.: Недра, 1976.
  • Электротехнический справочник. Т. 1. / Составитель И. И. Алиев. — М. : ИП РадиоСофт, 2006.
  • Статья на Википедии

Поделиться в социальных сетях

свойства, ГОСТ. Производство медно-никелевых сплавов. Чистка монет из медно-никелевого сплава

Медь относится к группе цветных металлов. В чистом виде она обладает высокой тепло- и электропроводностью, именно поэтому используется в основном в электротехническом производстве. Медь – очень пластичный материал, который хорошо поддается обработке давлением в холодном и в горячем состоянии.

Для повышения механических, конструкторских и эксплуатационных свойств меди используют его соединения с другими металлами. В результате процесса сплавления изменяется строение кристаллических решеток, возникают дополнительные связи между ионами и атомами. Именно это повышает прочность сплава по сравнению с чистым металлом.

Для чего медь сплавляют с никелем

При сплавлении никель выступает главным легирующим элементом. Он обладает коррозионной стойкостью, поэтому, в основном, используется для упрочнения. При сплавлении его с медью образуются непрерывные твердые растворы. Медно-никелевый сплав приобретает ряд новых свойств:

  • повышается жаропрочность материала;
  • существенно снижается температурный коэффициент электросопротивления;
  • появляется высокая устойчивость к коррозии, особенно в морской воде.

Классификация

Свойства медно-никелевого сплава зависят от процентного содержания в нем никеля и других веществ. В настоящее время создано много новых специальных материалов с уникальными характеристиками.В зависимости от области применения их делят на конструкционные и электротехнические.

  • Конструкционные - обладают высокими антикоррозионными и прочностными характеристиками. Изделия из них отличаются устойчивостью к агрессивным средам. Это мельхиор, нейзильбер и куниаль. Отдельное место в этом списке занимает монель, состав которого и пропорциональное соотношение элементов несколько иные.
  • Электротехнические - отличаются повышенным электрическим сопротивлением и термоэлектрическими свойствами, используют их в энергетике и электротехнике. Это константан, манганин и копель.

Знание химического состава и физических характеристик позволяет определить медно-никелевый сплав в одну из групп.

Мельхиор

Содержит примерно 80% меди, около 20% никеля, а также немного марганца и железа. Подобный сплав был известен людям еще в III веке до н. э. под названием «белая медь» благодаря светло-серебристому цвету, напоминающему серебро. Это обладающий высокими антикоррозионными свойствами, а также большим запасом прочности и износостойкости медно-никелевый сплав. Температура плавления - примерно 1170 °С. Хорошая пластичность позволяет обрабатывать изделия из него давлением. Используется в производстве конденсаторов, из него изготавливают медицинские инструменты, недорогие ювелирные украшения, столовые приборы, монеты.

Нейзильбер

Этот медно-никелевый сплав с добавлением цинка, имеющий серебристый с зеленоватым оттенком цвет. В зависимости от марки может содержать до 35 % никеля и до 45 % цинка, остальное – медь. Такое солидное содержание цинка существенно удешевляет его производство. Нейзильбер обладает примерно такими же механическими свойствами, что и мельхиор. Он устойчив к коррозии, прочен, достаточно пластичен для обработки в горячем и холодном состоянии методом давления.

Иногда дополнительно легируется свинцом для более качественной механической обработки. В основном из него изготовляют детали приборов, часов, медицинских инструментов. Интересно, что благодаря дешевизне сейчас именно из него чаще, чем из мельхиора, производят ювелирные изделия, медали и ордена. Нейзильбер также используют при изготовлении финифти.

Куниаль

Состоит из медной основы, никеля - до 20 %, небольших добавок алюминия. Сплавляется при температуре 1183°С с последующей закалкой и старением, чем достигаются очень высокие показатели прочности и устойчивости к низким температурам. Подразделяется на марки А (МНА13-3) и Б(МНА 6-1,5).
Марка А обладает двумя важными характеристиками – высокой прочностью и уникальной устойчивостью к коррозии в агрессивных средах. К примеру, в морской воде он может эксплуатироваться десятилетиями. Поэтому сплав используется для изготовления деталей специального назначения (гребные винты).

Марка Б обладает пружинящими свойствами, поэтому широко используется для изготовления упругих элементов ответственного назначения. Также он очень устойчив к изломам на морозе. Из него производят конструкционные детали, работающие в условиях низких температур.

Монель

В нем содержится примерно две трети никеля и одна треть меди. Температура плавления - 1350 °С. Главное свойство этого медно-никелевого сплава – устойчивость к коррозии. Он имеет высокие показатели механических свойств – прочности и пластической деформации. Монель марки НМЖМц содержит примерно 28% меди, 3% железа, около 3% магния, небольшое количество кобальта и никель.

Такие же характеристики имеет монель-400. Он является брендом Special Metals Corporation и был запатентован в 1906 году. Поэтому другие компании-производители не могут использовать это название. Так появился еще один сплав – Nicorros. Однако эти материалы идентичны по все химическим и техническим характеристикам.Так как сплав содержит более половины никеля в процентном соотношении, его стоимость достаточно высока. Однако существует технология производства медно-никелевого сплава с использованием сырья из природных сульфидных руд с содержанием обоих элементов, без предварительного разделения на отдельные составляющие. Это позволяет значительно удешевить конечный продукт.

Монель используют для производства изделий, эксплуаьтруемых в агрессивных средах, условиях повышенной механической нагрузки. Это судостроение, химическая и нефтяная промышленность, изготовление медицинских инструментов, ответственных деталей машин и аппаратов.

Константан

Имеет белый цвет с характерным желтоватым оттеком. В состав входят: медь -59 %; никель – 39-41 %; марганец – 1-2 %. Температура плавления 1260 °С. Этот медно-никелевый сплав получил свое название благодаря основному свойству – термостабильности. Он имеет очень хорошие показатели электрического сопротивления при низком значении температурного коэффициента расширения. Сплав идет для изготовления проволоки для термопар, в производстве измерительных приборов, а также электронагревательных элементах, работающих при температурах до 400-500 градусов.

Проволока, изготовленная из константана, подвергается специальной термической обработке, в результате которой металл на поверхности образует тонкую окисную пленку. Благодаря этому изделие не нуждается в дополнительной лакировке или защитном покрытии. Константан очень пластичен. Это свойство позволяет применять его при сварке медно-никелевых сплавов.

Недостатком константана является его достаточно высокая ЭДС - около 43 мкВ. Это исключает использование проволоки и ленты из него в высокоточных измерительных приборах.

Манганин

Содержит примерно 5% никеля, 12% марганца и основу из меди. Температура плавления - 960 °С. Интересно, что манганин был изобретен американцем Эдвардом Венстоном примерно в 1888 году на основе им же изобретенного константана как специальный материал для обмоток электроизмерительных приборов. Он действительно имеет высокое удельное электрическое сопротивление, а также крайне малую ЭДС в паре с медью (не более 1 мкВ), что выгодно отличает его от константана.

Для того, чтобы снизить температурный коэффициент сопротивления, мангановую проволоку отжигают при температурах около 600 градусов в условиях вакуума, затем медленно охлаждают. Эта технология позволяет увеличить температуру, при которой материал сохраняет свои электрические свойства, до 200°С. Уже намотанную в катушки проволоку дополнительно нагревают неоднократно до 150 °С. Так достигается эффект искусственного старения, после которого изменения в кристаллической структуре металла сводятся к минимуму.

Основная область применение манганина как материала со стабильными показателями электросопротивления - изготовление разнообразных приборов высокой точности для измерения показателей электрического тока (силы тока, напряжения, мощности).

Копель

Еще один специальный сплав. Содержит медь, 43% никеля, немного железа и марганца. Температура плавления 1290 °С. Благодаря оптимальному соотношению стабильно низкого удельного сопротивления и высокой ТЭДС в паре с различными металлами сплав применяется для изготовления проволоки для термопар и электродов. Показатель ТЭДС материала возрастает пропорционально рабочей температуре:

  • при 100 градусах по Цельсию - 6,95В;
  • при 600 - до 49В.

Копель очень термостоек - без нарушения основных свойств выдерживает нагревание до 600 градусов и устойчив к коррозии.
Копель применяется в термопарах датчиков приборов для бесконтактного измерения температуры. В них используются термопары с максимальной ТЭДС – с хромом, медью или железом Эти элементы являются положительными электродами, а копель –отрицательным. Термопара копель-хромель используется в основном в пирометрии для постоянного контроля температурного режима в диапазоне от 200 до 600 градусов в промышленных и лабораторных установках.

Процесс плавки

При производстве медно-никелевых сплавов придерживаются сравнительно похожих технологий. Мельхиор, нейзильбер, куниаль, константан, манганин сначала плавят в индукционных печах под слоем прокаленного древесного угля. Добавление к шихте отходов допускается до 80%.

Процесс плавки начинается с меди и никеля. По мере их расплавления добавляются отходы крупным куском, потом мелкие. В последнюю очередь загружается цинк. После окончательного расплавления шихты производят раскисление марганцем и кремнием (нейзильбер), либо кремнием и марганцем (константан и мельхиор). После этого с поверхности расплава убирают весь шлак и добавляют еще древесного угля. Нагревают раскаленную массу до температуры около 1300 °С, при необходимости добавляют хлористый марганец для рафинирования.

Немного отличается технология приготовления куниалей, так как они содержат алюминий. Перед введением алюминия в расплав обязательно добавляют 0,1% марганца для раскисления. А после растворения алюминия поверхность расплава посыпают флюсом. Если этого не сделать, образуются пленки, от которых расплав становится негодным для заливки.

Химические, физические и конструкционные свойства определяют область назначения различных медно-никелевых сплавов. ГОСТ 492–73, ГОСТ 5063–73, ГОСТ 5187–70, ГОСТ 5220–78, ГОСТ 17217–79, ГОСТ 10155–75 являются основными стандартами при их производстве.

Чеканка монет

Примерно с конца позапрошлого века повсеместно начали чеканить монеты из медно-никелевого сплава. Состав его сильно различался на разных монетных дворах. Но в основном он содержал до 30% никеля, незначительную железную примесь и медь как основу. Так как металл для обычных монет должен быть в первую очередь пластичным, ковким, износостойким и недорогим, практическим путем был определен состав монетного сплава. Впоследствии особенной популярностью для изготовления монет пользовался мельхиор.

Современные российские монеты выполнены из различных сплавов. В частности, полностью из мельхиора состоят монеты, выпущенные до 2009 года. Стальные монеты номиналом одна и пять копеек и медные пятирублевые покрыты тонким слоем мельхиора. Такой материал получил название «биметалл». Так все больше снижается себестоимость изготовления металлических денег.

Сплавы меди с никелем мало подвержены окислению на воздухе. Поэтому его признаки можно встретить лишь на старых монетах, либо тех, что долгое время находились в агрессивной среде. Знатоки-кладоискатели и нумизматы применяют для очистки ценных экземпляров монет различные средства – от народных рецептов до передовых технологий.
Очистка с мыльным раствором хорошо удаляет лишь зеленоватые медные окислы. Применяют также оливковое масло, уксусную кислоту, пасту "Гойя". Нужно иметь в виду, что эти средства могут не только снять налет, но и вступить в реакцию с самим сплавом, нанеся вред монете. Наиболее эффективной, щадящей и быстрой является чистка монет из медно-никелевого сплава с помощью электролиза.

температура плавления, плотность и удельный объем

В металлургической промышленности одним из основных направлений считается литье металлов и их сплавов по причине дешевизны и относительной простоты процесса. Отливаться могут формы с любыми очертаниями различных габаритов, от мелких до крупных; это подходит как для массового, так и для индивидуального производства.

Литье является одним из древнейших направлений работы с металлами, и начинается примерно с бронзового века: 7−3 тысячелетия до н. э. С тех пор было открыто множество материалов, что приводило к развитию технологии и повышению требований к литейной промышленности.

В наши дни существует много направлений и видов литья, различающихся по технологическому процессу. Одно остается неизменным - физическое свойство металлов переходить из твердого состояния в жидкое, и важно знать то, при какой температуре начинается плавление разных видов металлов и их сплавов.

Процесс плавления металла

Данный процесс обозначает собой переход вещества из твердого состояния в жидкое. При достижении точки плавления металл может находиться как в твердом, так и в жидком состоянии, дальнейшее возрастание приведет к полному переходу материала в жидкость.

То же самое происходит и при застывании - при достижении границы плавления вещество начнет переходить из жидкого состояния в твердое, и температура не изменится до полной кристаллизации.

При этом следует помнить, что данное правило применимо только для чистого металла. Сплавы не имеют четкой границы температур и совершают переход состояний в некотором диапазоне :

  1. Солидус - линия температуры, при которой начинает плавиться самый легкоплавкий компонент сплава.
  2. Ликвидус - окончательная точка плавления всех компонентов, ниже которой начинают появляться первые кристаллы сплава.

Точно измерить температуру плавления таких веществ невозможно, точкой перехода состояний указывается числовой промежуток.

В зависимости от температуры, при которой начинается плавление металлов, их принято разделять на :

  • Легкоплавкие, до 600 °C. К ним относятся олово, цинк, свинец и другие.
  • Среднеплавкие, до 1600 °C. Большинство распространенных сплавов, и такие металлы как золото, серебро, медь, железо, алюминий.
  • Тугоплавкие, свыше 1600 °C. Титан, молибден, вольфрам, хром.

Также существует и температура кипения - точка, при достижении которой расплавленный металл начнет переход в газообразное состояние. Это очень высокая температура, как правило, в 2 раза превышающая точку расплава.

Влияние давления

Температура плавления и равная ей температура затвердевания зависят от давления, возрастая с его повышением. Это обусловлено тем, что при повышении давления атомы сближаются между собой, а для разрушения кристаллической решетки их нужно отдалить. При повышенном давлении требуется большая энергия теплового движения и соответствующая ей температура плавления увеличивается.

Существуют исключения, когда температура, необходимая для перехода в жидкое состояние, при повышенном давлении уменьшается. К таким веществам относят лёд, висмут, германий и сурьма.

Таблица температур плавления

Любому человеку, связанному с металлургической промышленностью, будь то сварщик, литейщик, плавильщик или ювелир, важно знать температуры, при которых происходит расплав материалов, с которыми он работает. В нижеприведенной таблице указаны точки плавления наиболее распространенных веществ.

Таблица температур плавления металлов и сплавов

Помимо таблицы плавления, существует много других вспомогательных материалов. Например, ответ на вопрос, какова температура кипения железа лежит в таблице кипения веществ. Помимо кипения, у металлов есть ряд других физических свойств, как прочность.

Прочность металлов

Помимо способности перехода из твердого в жидкое состояние, одним из важных свойств материала является его прочность - возможность твердого тела сопротивлению разрушению и необратимым изменениям формы. Основным показателем прочности считается сопротивление возникающее при разрыве заготовки, предварительно отожженной. Понятие прочности не применимо к ртути, поскольку она находится в жидком состоянии. Обозначение прочности принято в МПа - Мега Паскалях.

Существуют следующие группы прочности металлов :

  • Непрочные. Их сопротивление не превышает 50МПа. К ним относят олово, свинец, мягкощелочные металлы
  • Прочные, 50−500МПа. Медь, алюминий, железо, титан. Материалы этой группы являются основой многих конструкционных сплавов.
  • Высокопрочные, свыше 500МПа. Например, молибден и вольфрам.

Таблица прочности металлов

Наиболее распространенные в быту сплавы

Как видно из таблицы, точки плавления элементов сильно разнятся даже у часто встречающихся в быту материалов.

Так, минимальная температура плавления у ртути -38,9 °C, поэтому в условиях комнатной температуры она уже в жидком состоянии. Именно этим объясняется то, что бытовые термометры имеют нижнюю отметку в -39 градусов Цельсия: ниже этого показателя ртуть переходит в твердое состояние.

Припои, наиболее распространенные в бытовом применении, имеют в своем составе значительный процент содержания олова, имеющего точку плавления 231.9 °C, поэтому большая часть припоев плавится при рабочей температуре паяльника 250−400°C.

Помимо этого, существуют легкоплавкие припои с более низкой границей расплава, до 30 °C и применяются тогда, когда опасен перегрев спаиваемых материалов. Для этих целей существуют припои с висмутом, и плавка данных материалов лежит в интервале от 29,7 - 120 °C.

Расплавление высокоуглеродистых материалов в зависимости от легирующих компонентов лежит в границах от 1100 до 1500 °C.

Точки плавления металлов и их сплавов находятся в очень широком температурном диапазоне, от очень низких температур (ртуть) до границы в несколько тысяч градусов. Знание этих показателей, а так же других физических свойств очень важно для людей, которые работают в металлургической сфере. Например, знание того, при какой температуре плавится золото и другие металлы пригодятся ювелирам, литейщикам и плавильщикам.

Каждый металл и сплав имеет собственный уникальный набор физических и химических свойств, среди которых не последнее место занимает температура плавления. Сам процесс означает переход тела из одного агрегатного состояния в другое, в данном случае, из твердого кристаллического состояния в жидкое. Чтобы расплавить металл, необходимо подводить к нему тепло до достижения температуры плавления. При ней он все еще может оставаться в твердом состоянии, но при дальнейшем воздействии и повышении тепла металл начинает плавиться. Если температуру понизить, то есть отвести часть тепла, элемент затвердеет.

Самая высокая температура плавления среди металлов принадлежит вольфраму : она составляет 3422С о, самая низкая - у ртути: элемент плавится уже при - 39С о. Определить точное значение для сплавов, как правило, не представляет возможности: оно может значительно колебаться в зависимости от процентного соотношения компонентов. Их обычно записывают в виде числового промежутка.

Как происходит

Плавление всех металлов происходит примерно одинаково - при помощи внешнего или внутреннего нагревания. Первый осуществляется в термической печи, для второго используют резистивный нагрев при пропускании электрического тока или индукционный нагрев в высокочастотном электромагнитном поле. Оба варианта воздействуют на металл примерно одинаково.

При увеличении температуры увеличивается и амплитуда тепловых колебаний молекул , возникают структурные дефекты решетки, выражающиеся в росте дислокаций, перескоке атомов и других нарушениях. Это сопровождается разрывом межатомных связей и требует определенного количества энергии. В это же время происходит образование квази-жидкого слоя на поверхности тела. Период разрушения решетки и накопления дефектов называется плавлением.

В зависимости от температуры плавления металлы делятся на:

В зависимости от температуры плавления выбирают и плавильный аппарат . Чем выше показатель, тем прочнее он должен быть. Узнать температуру нужного вам элемента можно из таблицы.

Еще одной немаловажной величиной является температура кипения. Это величина, при которой начинается процесс кипения жидкостей, она соответствует температуре насыщенного пара, который образуется над плоской поверхностью кипящей жидкости. Обычно она почти в два раза больше, чем температура плавления.

Обе величины принято приводить при нормальном давлении. Между собой они прямопропорциональны .

  1. Увеличивается давление - увеличится величина плавления.
  2. Уменьшается давление - уменьшается величина плавления.

Таблица легкоплавких металлов и сплавов (до 600С о)

Таблица среднеплавких металлов и сплавов (от 600С о до 1600С о)

Таблица тугоплавких металлов и сплавов (свыше 1600С о)

Каждый металл или сплав обладает уникальными свойствами, в число которых входит температура плавления. При этом объект переходит из одного состояния в другое, в конкретном случае становится из твёрдого жидким. Чтобы его расплавить, необходимо подвести к нему тепло и нагревать до достижения нужной температуры. В момент, когда достигается нужная точка температуры данного сплава, он ещё может остаться в твёрдом состоянии. При продолжении воздействия начинает плавиться.

Наиболее низкая температура плавления у ртути - она плавится даже при -39 °C, самая высокая у вольфрама - 3422 °C. Для сплавов (стали и других) определить точную цифру крайне сложно. Все зависит от соотношения компонентов в них. У сплавов она записывается как числовой промежуток.

Как происходит процесс

Элементы, какими бы они ни были: золото, железо, чугун, сталь или любой другой - плавятся примерно одинаково. Это происходит при внешнем или внутреннем нагревании. Внешнее нагревание осуществляется в термической печи. Для внутреннего применяют резистивный нагрев, пропуская электрический ток или индукционный нагрев в электромагнитном поле высокой частоты . Воздействие при этом примерно одинаковое.

Когда происходит нагревание , усиливается амплитуда тепловых колебаний молекул. Появляются структурные дефекты решётки , сопровождаемые разрывом межатомных связей. Период разрушения решётки и скопления дефектов и называется плавлением.

В зависимости от градуса, при котором плавятся металлы, они разделяются на:

  1. легкоплавкие - до 600 °C: свинец, цинк, олово;
  2. среднеплавкие - от 600 °C до 1600 °C: золото, медь, алюминий, чугун, железо и большая часть всех элементов и соединений;
  3. тугоплавкие - от 1600 °C: хром, вольфрам, молибден, титан.

В зависимости от того, каков максимальный градус, подбирается и плавильный аппарат. Он должен быть тем прочнее, чем сильнее будет нагревание.

Вторая важная величина - градус кипения. Это параметр, при достижении которого начинается кипение жидкостей. Как правило, она в два раза выше градуса плавления. Эти величины прямо пропорциональны между собой и обычно их приводят при нормальном давлении.

Если давление увеличивается, величина плавления тоже увеличивается. Если давление уменьшается, то и она уменьшается.

Таблица характеристик

Металлы и сплавы - непременная основа для ковки , литейного производства, ювелирной продукции и многих других сфер производства. Чтобы не делал мастер (ювелирные украшения из золота , ограды из чугуна, ножи из стали или браслеты из меди) , для правильной работы ему необходимо знать температуры, при которых плавится тот или иной элемент.

Чтобы узнать этот параметр, нужно обратиться к таблице. В таблице также можно найти и градус кипения.

Среди наиболее часто применяемых в быту элементов показатели температуры плавления такие:

  1. алюминий - 660 °C;
  2. температура плавления меди - 1083 °C;
  3. температура плавления золота - 1063 °C;
  4. серебро - 960 °C;
  5. олово - 232 °C. Олово часто используют при пайке, так как температура работающего паяльника составляет как раз 250–400 градусов;
  6. свинец - 327 °C;
  7. температура плавления железо - 1539 °C;
  8. температура плавления стали (сплав железа и углерода) - от 1300 °C до 1500 °C. Она колеблется в зависимости от насыщенности стали компонентами;
  9. температура плавления чугуна (также сплав железа и углерода) - от 1100 °C до 1300 °C;
  10. ртуть - -38,9 °C.

Как понятно из этой части таблицы, самый легкоплавкий металл - ртуть, которая при плюсовых температурах уже находится в жидком состоянии.

Градус кипения всех этих элементов почти вдвое, а иногда и ещё выше градуса плавления. Например, у золота он 2660 °C, у алюминия - 2519 °C , у железа - 2900 °C, у меди - 2580 °C, у ртути - 356,73 °C.

У сплавов типа стали, чугуна и прочих металлов расчёт примерно такой же и зависит от соотношения компонентов в сплаве.

Максимальная температура кипения у металлов - у рения - 5596 °C . Наибольшая температура кипения - у наиболее тугоплавящихся материалов.

Бывают таблицы, в которых также указана плотность металлов . Самым лёгким металлом является литий, самым тяжёлым - осмий. У осмия плотность выше, чем у урана и плутония, если рассматривать её при комнатной температуре. К лёгким металлам относятся: магний, алюминий, титан. К тяжёлым относится большинство распространённых металлов: железо, медь, цинк, олово и многие другие. Последняя группа - очень тяжёлые металлы, к ним относятся: вольфрам, золото, свинец и другие.

Ещё один показатель, встречающийся в таблицах - это теплопроводность металлов . Хуже всего тепло проводит нептуний, а лучший по теплопроводности металл - серебро. Золото, сталь, железо, чугун и прочие элементы находится посередине между этими двумя крайностями. Чёткие характеристики для каждого можно найти в нужной таблице.

Температура плавления, наряду с плотностью, относится к физическим характеристикам металлов . Температура плавления металла - температура, при которой металл переходит из твердого состояния, в котором находится в нормальном состоянии (кроме ртути), в жидкое состояние при нагревании. При плавлении объем металла практически не изменяется, поэтому на температуру плавления нормальное атмосферное давление не влияет .

Температура плавления металлов находится в диапазоне от -39 градусов Цельсия до +3410 градусов . Для большинства металлов температура плавления высокая, однако, некоторые металлы можно расплавить в домашних условиях при нагревании на обычной горелке (олово, свинец).

Классификация металлов по температуре плавления

  1. Легкоплавкие металлы , температура плавления которых колеблется до 600 градусов Цельсия, например цинк, олово, висмут .
  2. Среднеплавкие металлы , которые плавятся при температуре от 600 до 1600 градусов Цельсия: такие как алюминий, медь, олово, железо .
  3. Тугоплавкие металлы , температура плавления которых достигает более 1600 градусов Цельсия - вольфрам, титан, хром и др.
  4. - единственный металл, находящийся при обычных условиях (нормальное атмосферное давление, средняя температура окружающей среды) в жидком состоянии. Температура плавления ртути составляет порядка -39 градусов по Цельсию.

Таблица температур плавления металлов и сплавов

Металл

Температура плавления,

градусов Цельсия

Алюминий 660,4
Вольфрам 3420
Дюралюмин ~650
Железо 1539
Золото 1063
Иридий 2447
Калий 63,6
Кремний 1415
Латунь ~1000
Легкоплавкий сплав 60,5
Магний 650
Медь 1084,5
Натрий 97,8
Никель 1455
Олово 231,9
Платина 1769,3
Ртуть –38,9
Свинец 327,4
Серебро 961,9
Сталь 1300-1500
Цинк 419,5
Чугун 1100-1300

При плавлении металла для изготовления металлических изделий-отливок от температуры плавления зависит выбор оборудования, материала для формовки металла и др. Следует также помнить, что при легировании металла другими элементами температура плавления чаще всего снижается .

Интересный факт

Не стоит путать понятия "температура плавления металла" и "температура кипения металла" - для многих металлов эти характеристики существенно отличаются: так, серебро плавится при температуре 961 градус по Цельсию, а закипает только при достижении нагрева до 2180 градусов.

Температура плавления металла – это минимальная температура, при которой он переходит из твердого состояния в жидкое. При плавлении его объем практически не изменяется. Металлы классифицируют по температуре плавления в зависимости от степени нагревания.

Легкоплавкие металлы

Легкоплавкие металлы имеют температуру плавления ниже 600°C. Это цинк, олово, висмут. Такие металлы можно расплавить в домашних условиях, разогрев их на плите, или с помощью паяльника. Легкоплавкие металлы используются в электронике и технике для соединения металлических элементов и проводов для движения электрического тока. Температура плавления олова составляет 232 градуса, а цинка – 419.

Среднеплавкие металлы

Среднеплавкие металлы начинают переходить из твердого в жидкое состояние при температуре от 600°C до 1600°C. Они используются для изготовления плит, арматур, блоков и других металлических конструкций, пригодных для строительства. К этой группе металлов относятся железо, медь, алюминий, они также входят в состав многих сплавов. Медь добавляют в сплавы драгоценных металлов, таких как золото, серебро, платина. Золото 750 пробы на 25% состоит из лигатурных металлов, в том числе и меди, которая придает ему красноватый оттенок. Температура плавления этого материала равна 1084 °C. А алюминий начинает плавиться при относительно низкой температуре, составляющей 660 градусов Цельсия. Это легкий пластичный и недорогой металл, который не окисляется и не ржавеет, поэтому широко используется при изготовлении посуды. Температура плавления железа равна 1539 градусов. Это один из самых популярных и доступных металлов, его применение распространено в строительстве и автомобильной промышленности. Но ввиду того, что железо подвергается коррозии, его нужно дополнительно обрабатывать и покрывать защитным слоем краски, олифы или не допускать попадания влаги.

Тугоплавкие металлы

Температура тугоплавких металлов выше 1600°C. Это вольфрам, титан, платина, хром и другие. Их используют в качестве источников света, машинных деталей, смазочных материалов, а также в ядерной промышленности. Из них изготавливают проволоки, высоковольтные провода и используют для расплавки других металлов с более низкой температурой плавления. Платина начинает переходить из твердого в жидкое состояние при температуре 1769 градусов, а вольфрам – при температуре 3420°C.

Ртуть – единственный металл, находящийся в жидком состоянии при обычных условиях, а именно, нормальном атмосферном давлении и средней температуре окружающей среды. Температура плавления ртути составляет минус 39°C. Этот металл и его пары являются ядовитыми, поэтому он используется только в закрытых емкостях или в лабораториях. Распространенное применение ртути – градусник для измерения температуры тела.

Металлы плавятся, как правило, при очень высокой температуре, которая может достигать более 3 тыс. градусов. Хотя некоторые из них можно расплавить в домашних условиях, например, свинец или олово. А вот ртуть плавят при температуре минус 39 градусов. В домашних условиях этого добиться не удастся. Температура плавления - это один из важных показателей производства не только самого металла, но и его сплавов. Выплавляя сырье, специалисты учитывают и другие физические и химические свойства руды и металла.

Железо и его свойства

Железо - это химический элемент, который в таблице Менделеева находится под номером 26. Это один из самых распространенных элементов во всей Солнечной системе. Согласно материалам исследований, в составе ядра Земли находится примерно 79−85% этого вещества . В земной коре его тоже присутствует большое количество, но оно уступает алюминию.

В чистом виде металл имеет белый цвет с чуть серебристым оттенком. Он пластичен, но имеющиеся в нем примеси могут определять его физические свойства. Реагирует на магнит.

Железо присутствует в воде. В речных водах его концентрация равна примерно 2 мг/л металла. В морской воде его содержание может быть ниже в сто или даже тысячу раз.

Оксид железа - это основная форма, добыча которой осуществляется и которая находится в природе. Оксидное железо может располагаться в самой верхней части земной коры и быть составляющей осадочных образований.

Элемент, находящийся на двадцать шестом месте в таблице Менделеева, может иметь несколько степеней окисления. Именно они определяют его геохимическую особенность нахождения в определенной среде. В ядре Земли металл присутствует в нейтральной форме.

Добыча полезных ископаемых

Руд, в которых присутствует железо, существует несколько. Однако, в качестве сырья для производства железа в промышленности используют в основном следующие:

  • магнезитовую руду;
  • гетитовую руду;
  • гематитовую руду.

А также часто встречаются такие разновидности руды:

Существует еще минерал под названием мелантерит . Его используют преимущественно в фармацевтической промышленности. Из себя он представляет зелёного цвета хрупкие кристаллы, в которых присутствует стеклянный блеск. Из него производят лекарственные препараты, в составе которых имеется ферум.

Основным месторождением этого металла является Южная Америка, а именно Бразилия.

Плавление железа и необходимая температура

Точкой плавления металла называют такую минимальную температуру, при которой он переходит из твердого состояния в жидкое. При этом в объеме он практически остается неизменным.

Металл могут производить из руды различными способами, но самый основной из них - это доменный . Помимо доменного, используют еще выплавку железа при помощи обжига измельченной руды с примесью глины. Из полученной смеси формируют окатыши, которые обрабатываются в печи с последующим восстановлением водородом. Далее плавление железа осуществляется в электрической печи.

Температура плавления железа весьма высока. Для технически чистого элемента она составляет +1539 °C. В этом веществе присутствует примесь - Сера, которую можно извлечь лишь в жидком виде. Без примесей чистый материал получают при электролизе солей металла.

Классификация металлов по температуре плавления

Разные металлы могут переходить в жидкое состояние при разной температуре. Вследствие этого выделяют определённую классификацию. Их делят следующим образом:

  1. Легкоплавкие - те элементы, которые могут становиться жидкими уже при температуре ниже 600 градусов. К ним относят цинк, олово, свинец и пр. Их можно расплавить даже в домашних условиях - просто нужно разогреть при помощи плиты или паяльника. Такие виды нашли применение в технике и электронике. Они используются для соединения элементов из металла и движения электрического тока. Олово плавится при 232 градусах, а цинк - при 419 градусах.
  2. Среднеплавкие - элементы, которые начинают расплавляться при температуре от шестисот до тысячи шестисот градусов. Эти элементы используют по большей части для строительных элементов и металлоконструкций, то есть при создании арматур, плит и строительных блоков. В эту группу входят: железо, медь, алюминий. Температура плавления алюминия сравнительно низка и составляет 660 градусов. А вот железо начинает переходить в жидкое состояние лишь при температуре 1539 градусов. Это один из самых распространенных металлов, используемых в промышленности, особенно в автомобильной. Однако железо подвержено коррозии, то есть ржавчине, поэтому ему требуется специальная поверхностная обработка. Его необходимо покрывать краской или олифой, и не допускать попадание влаги.
  3. Тугоплавкие - это такие материалы, которые расплавляются и становятся жидкими при температуре выше 1600 градусов. В эту группу относят вольфрам, титан, платину, хром и т. п. Они используются в ядерной промышленности и для некоторых машинных деталей. Они могут применяться для расплавки других металлов, изготовления высоковольтных проводов или проволоки. Платину можно расплавить при 1769 градусах, а вольфрам - при 3420 °C.

Единственный элемент, который при обычных условиях находится в жидком состоянии - это ртуть. Температура его плавления составляет минус 39 градусов и его пары являются ядовитыми, поэтому его используют только в лабораториях и закрытых ёмкостях.

Температуру плавления металлов, которая изменяется от малейшего (-39 °С для ртути) до наибольшего (3400 °С для вольфрама), а также плотность металлов в твердом состоянии при 20 °С и плотности жидких металлов при температуре плавления приведены в таблице плавки цветных металлов.

Таблица 1. Плавки цветных металлов

Атомная масса

Температура плавления t пл , °С

Густота ρ , г/см 3

твердого при 20 °С

редкого при

t пл

Алюминий

Вольфрам

Марганец

Молибден

Цирконий

Сварка и плавка цветных металлов

Сварка меди . Температура плавки металла Cu, почти в шесть раз превышает температуру плавки стали, медь интенсивно поглощает и растворяет различные газы, образуя с кислородом оксиды. Оксид меди II с медью образует эвтектику, температура плавления которой (1064°С) ниже температуры плавления меди (1083°С). При затвердевании жидкой меди эвтектика располагается по границам зерен, делает медь хрупкой и склонной к образованию трещин. Поэтому основной задачей при сварке меди является защита его от окисления и активное раскисление сварочной ванны.

Наиболее распространенное газовое сварки меди ацетиленокисневим пламенем с помощью горелок, которые в 1,5…2 раза мощнее горелки для сварки сталей. Присадочным металлом есть медные прутки, содержащие фосфор и кремний. Если толщина изделий более 5…6 мм, их сначала подогревают до температуры 250…300°С. Флюсами при сварке является прожаренная бура или смесь, состоящую из 70% буры и 30% борной кислоты. Чтобы повысить механические свойства и улучшить структуру наплавленного металла, медь после сварки проковывают при температуре около 200…300°С. Потом ее снова нагревают до 500-550°С и охлаждают в воде. Медь сваривают также электродуговым способом электродами, в струе защитных газов, под слоем флюса, на конденсаторных машинах, способом трения.

Сварка латуни . Латунь – это сплав меди с цинком (до 50%). Основное загрязнение при этом – испарение цинка, в итоге чего шов теряет свои качества, в нем возникают поры. Латунь, как и медь, в основном сваривают ацетиленовым окислительным пламенем, при котором на поверхности ванны создается пленка тугоплавкого оксида цинка, уменьшающая дальнейшее выгорание и испарение цинка. Флюсы используют такие же, как и при сварке меди. Они создают на поверхности ванны шлаки, которые связывают оксиды цинка и затрудняют выход паров из сварочной ванны. Латунь сваривают также в защитных газах и на контактных машинах.

Сварка бронзы . В большинстве случаев бронза – это литейный материал, поэтому

сварку применяют при исправлении дефектов или во время ремонта. Чаще всего применяют сварку металлическим электродом. Присадочным металлом является прутки того самого состава, что и основной металл, а флюсами или электродным покрытием – хлористые и фтористые соединения калия и натрия.

. Основными факторами, затрудняющими сварку алюминия, является низкая температура его плавления (658°С), большая теплопроводность (примерно в 3 раза выше теплопроводности стали), образование тугоплавких оксидов алюминия, которые имеют температуру плавления 2050°С, поэтому технология плавки цветных металлов, таких как медь или бронза, не подходит для плавки алюминия. Кроме того, эти оксиды слабо реагируют как с кислыми, так и основными флюсами, поэтому плохо удаляются из шва.

Чаще всего используют газовую сварку алюминия ацетиленовым пламенем. В последние годы значительно распространилось также автоматическая дуговая сварка металлическими электродами под флюсом и в среде аргона. При всех способах сварки, кроме аргонодуговой, применяют флюсы или электродные покрытия, в состав которых входят фтористые и хлористые соединения лития, калия, натрия и других элементов. Как присадочный металл при всех способах сварки используют проволоку или стержни того же состава, что и основной металл.

Алюминий хорошо сваривается электронным лучом в вакууме, на контактных машинах, электрошлаковым и другими способами.

Сварка сплавов алюминия . Сплавы алюминия с магнием и цинком сваривают без

особых осложнений, так же как и алюминий. Исключением является дюралюминий – сплавы алюминия с медью. Эти сплавы термически упрочняются после закалки и следующего старения. Когда температура плавки цветных металлов свыше 350°С в них происходит снижение прочности, которое не восстанавливается термической обработкой. Поэтому при сварке дюралюминия в зоне термического влияния прочность уменьшается на 40…50%. Если дюралюминий сваривать в защитных газах, то такое снижение может быть восстановлено термической обработкой до 80…90% по отношению к прочности основного металла.

Сварка магниевых сплавов . При газовой сварке обязательно применяют фторидные флюсы, которые в отличие от хлоридных не вызывают коррозии сварных соединений. Дуговая сварка магниевых сплавов металлическими электродами через низкое качество сварных швов до настоящего времени не применяется. При сварке магниевых сплавов наблюдается значительный рост зерна в около шовных участках и сильное развитие столбчатых кристаллов в сварном шве. Поэтому предел прочности сварных соединений составляет 55…60% предела прочности основного металла.

Таблица 2. Физические свойства промышленных цветных металлов

Свойства

М еталл

Атомный номер

Атомная масса

при температурте

20 °С, кг/м 3

Температура плавления, °С

Температура кипения, °С

Атомный диаметр, нм

Скрытая теплота плавления, кДж/кг

Скрытая теплота испарения,

Удельная теплоемкость при температуре 20 °С, Дж/(кг .°С)

Удельная теплопроводность, 20 °С, Вт/(м °С)

Коэффициент линейного расширения при температуре 25 °С, 10 6 ° С — 1

Удельное электросопротивление при температуре 20°С, мкОм м

Модуль нормальной упругости, ГПа

Модуль сдвига, ГПа

Тигельная плавка

Неотъемлемой составляющей производства металла и металлических изделий, является использование во время производственного процесса тиглей для производства, выплавки и переплавки как черного, так и цветного металла. Тигли - это неотъемлемая часть металлургического оборудования при отливании разнообразных металлов, сплавов, и тому подобное.

Керамический тигель для плавки цветных металлов используется для плавки металлов (меди, бронзы) с древнейших времен.

химический элемент Медь Cuprum — "Химическая продукция"

Что такое Медь, cuprum, характеристики, свойства

Медь — это химический элемент Cu (Cu от лат. Cuprum) — элемент одиннадцатой группы четвёртого периода (побочной подгруппы первой группы) периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Простое вещество медь — это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). C давних пор широко используется человеком.

Медь класс химических элементов

Элемент Cu — относится к группе, классу хим элементов (элемент одиннадцатой группы четвёртого периода (побочной подгруппы первой группы) периодической системы химических элементов Д. И. Менделеева, с атомным номером 29)

Элемент Cu свойство химического элемента Медь Cuprum

Основные характеристики и свойства элемента Cu…, его параметры.

формула химического элемента Медь Cuprum

Химическая формула Медьа:

Атомы Медь Cuprum химических элементов

Атомы Cuprum хим. элемента

Cuprum Медь ядро строение

Строение ядра химического элемента Cuprum — Cu,

История открытия Медь Cuprum

Открытие элемента Cuprum — один из первых металлов, хорошо освоенных человеком из-за доступности для получения из руды и малой температуры плавления. Этот металл встречается в природе в самородном виде чаще, чем золото, серебро и железо. Одни из самых древних изделий из меди, а также шлак — свидетельство выплавки её из руд — найдены на территории Турции, при раскопках поселения Чатал-Гююк.

Медный век

значительное распространение получили медные предметы, следует во всемирной истории за каменным веком. Несмотря на мягкость меди, медные орудия труда по сравнению с каменными дают значительный выигрыш в скорости рубки, строгания, сверления и распилки древесины, а на обработку кости затрачивается примерно такое же время, как для каменных орудий.

В древности медь применялась также в виде сплава с оловом — бронзы — для изготовления оружия и т. п., бронзовый век пришёл на смену медному. Сплав меди с оловом (бронзу) получили впервые за 3000 лет до н. э. на Ближнем Востоке. Бронза привлекала людей прочностью и хорошей ковкостью, что делало её пригодной для изготовления орудий труда и охоты, посуды, украшений. Все эти предметы находят в археологических раскопах. На смену бронзовому веку относительно орудий труда пришёл железный век.

Первоначально медь добывали из малахитовой руды, а не из сульфидной, так как она не требует предварительного обжига. Для этого смесь руды и угля помещали в глиняный сосуд, сосуд ставили в небольшую яму, а смесь поджигали. Выделяющийся угарный газ восстанавливал малахит до свободной меди:

На Кипре уже в 3 тысячелетии до нашей эры существовали медные рудники и производилась выплавка меди.

На территории России и сопредельных стран медные рудники появились за два тысячелетия до н. э. Остатки их находят на Урале (наиболее известное месторождение — Каргалы), в Закавказье, в Сибири, на Алтае, на территории Украины.

В XIII—XIV вв. освоили промышленную выплавку меди. В Москве в XV в. был основан Пушечный двор, где отливали из бронзы орудия разных калибров. Много меди шло на изготовление колоколов. Из бронзы были отлиты такие произведения литейного искусства, как Царь-пушка (1586 г.), Царь-колокол (1735 г.), Медный всадник (1782 г.), в Японии была отлита статуя Большого Будды (храм Тодай-дзи) (752 г.).

С открытием электричества в XVIII—XIX вв. большие объёмы меди стали идти на производство проводов и других связанных с ним изделий. И хотя в XX в. провода часто стали делать из алюминия, медь не потеряла значения в электротехнике.

Медь Cuprum происхождение названия

Откуда произошло название Cuprum Латинское название меди Cuprum (древн. Aes cuprium, Aes cyprium) произошло от названия острова Кипр, где было богатое месторождение.

У Страбона медь именуется халкосом, от названия города Халкиды на Эвбее. От этого слова произошли многие древнегреческие названия медных и бронзовых предметов, кузнечного ремесла, кузнечных изделий и литья. Второе латинское название меди Aes (санскр. ayas, готское aiz, герм. erz, англ. ore) означает руда или рудник.

Слова медь и медный встречаются в древнейших русских литературных памятниках. Славянское *mědь «медь» не имеет чёткой этимологии, возможно, исконное слово. В. И. Абаев предполагал происхождение слова от названия страны Мидия: *Мѣдь из ир. Мādа- через посредство греч. Μηδία[8]. Согласно этимологии М. Фасмера, слово «медь» родственно др-герм. smid «кузнец», smîdа «металл».

Медь обозначалась алхимическим символом «♀» — «зеркало Венеры», и иногда сама медь именовалась алхимиками тоже как «венера». Это связано с тем, что богиня красоты Венера (Афродита), являлась богиней Кипра, и из меди делались зеркала. Этот символ Венеры также был изображён на брэнде Полевского медеплавильного завода, им с 1735 по 1759 годы клеймилась полевская медь, и изображён на современном гербе города Полевской. С Гумёшевским рудником Полевского, — крупнейшим в XVIII—XIX веках месторождением медных руд Российской империи на Среднем Урале, — связан известный персонаж сказов П. П. Бажова — Хозяйка медной горы, покровительница добычи малахита и меди. По одной из гипотез, она является преломленным народным сознанием образом богини Венеры[

Распространённость Медь Cuprum

Как любой хим. элемент имеет свою распространенность в природе, Cu …

Получение Медь Cuprum

Cuprum — получение элемента

Физические свойства Медь Cuprum

Основные свойства Cuprum —

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Наряду с осмием, цезием и золотом, медь — один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов. Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвёртой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.

Медь образует кубическую гранецентрированную решётку, пространственная группа F m3m, a = 0,36150 нм, Z = 4.

Медь обладает высокой теплопроводностью и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). Удельная электропроводность при 20 °C: 55,5-58 МСм/м. Медь имеет относительно большой температурный коэффициент сопротивления: 0,4 %/°С и в широком диапазоне температур слабо зависит от температуры. Медь является диамагнетиком.

Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем и другие.

Атомная плотность меди (N0) = {\displaystyle 8,52\centerdot 10^{28}} {\displaystyle 8,52\centerdot 10^{28}}(атом/м³).

Изотопы Cuprum Медь

Наличие и определение изотопов Cuprum — природная медь состоит из двух стабильных изотопов — 63Cu (изотопная распространённость 69,1 %) и 65Cu (30,9 %). Известны более двух десятков нестабильных изотопов, самый долгоживущий из которых 67Cu с периодом полураспада 62 часа.

Медь-64

64Cu имеет период полураспада 12,7 часа и распадается по одной из четырех схем:

  • Позитронный распад: вероятность 17,8 %, дочерний изотоп стабильный 64Ni.
  • Бета-распад: вероятность 39 %, дочерний изотоп стабильный 64Zn.
  • Электронный захват: вероятность 43 %, дочерний изотоп стабильный 64Ni.
  • Внутренняя конверсия: вероятность 0,47 %, дочерний изотоп стабильный 64Ni.

Cu свойства изотопов Медь Cuprum

Символ
нуклида
Z(p) N(n) Масса изотопа
(а. е. м.)
Период
полураспада
(T1/2)
Спин и чётность
ядра
Энергия возбуждения
52Cu 29 23 51,99718 3+
53Cu 29 24 52,98555 300 нс 3/2-
54Cu 29 25 53,97671 75 нс 3+
55Cu 29 26 54,96605 40 мс 3/2-
56Cu 29 27 55,95856 93 мс 4+
57Cu 29 28 56,949211 196,3 мс 3/2-
58Cu 29 29 57,9445385 3,204 с 1+
59Cu 29 30 58,9394980 81,5 с 3/2-
60Cu 29 31 59,9373650 23,7 мин 2+
61Cu 29 32 60,9334578 3,333 ч 3/2-
62Cu 29 33 61,932584 9,673 мин 1+
63Cu 29 34 62,9295975 стабилен 3/2-
64Cu 29 35 63,9297642 12,700 ч 1+
65Cu 29 36 64,9277895 стабилен 3/2-
66Cu 29 37 65,9288688 5,120 мин 1+
67Cu 29 38 66,9277303 61,83 ч 3/2-
68Cu 29 39 67,9296109 31,1 с 1+
68mCu 721,6 кэВ 3,75 мин 6-
69Cu 29 40 68,9294293 2,85 мин 3/2-
69mCu 2,7418 МэВ 360 нс 13/2+
70Cu 29 41 69,9323923 44,5 с 6-
70m1Cu 101,1 кэВ 33 с 3-
70m2Cu 242,6 кэВ 6,6 с 1+
71Cu 29 42 70,9326768 19,4 с 3/2-
71mCu 2,756 МэВ 271 нс 19/2-
72Cu 29 43 71,9358203 6,6 с 1+
72mCu 270 кэВ 1,76 мкс 4-
73Cu 29 44 72,936675 4,2 с 3/2-
74Cu 29 45 73,939875 1,594 с 1+
75Cu 29 46 74,94190 1,224 с 3/2-
76Cu 29 47 75,945275 641 мс 3
76mCu 0 кэВ 1,27 с 1
77Cu 29 48 76,94785 469 мс 3/2-
78Cu 29 49 77,95196 342 мс
79Cu 29 50 78,95456 188 мс 3/2-
80Cu 29 51 79,96087 100 мс
81Cu 29 52 > 632 нс
82Cu 29 53 > 636 нс

Химические свойства Медь Cuprum

Определение химических свойств Cuprum

Меры предосторожности Медь Cuprum

Внимание! Внимательно ознакомьтесь с мерами безопасности при работе с Cuprum

Стоимость Медь Cuprum

Рыночная стоимость Cu, цена Медь Cuprum

Примечания

Список примечаний и ссылок на различные материалы про хим. элемент Cu

Дом

Бронза - обычно представляет собой сплав меди с оловом, а также с другими металлами или другими элементами, в составе которого не менее 80-90% меди. (медный сплав, который не называют «бронзой» — это латунь, сплав меди и цинка, а мельхиор — сплав никеля с медью). Спецификация состава бронзы включена в польский стандарт PN-xx/H-87050.

Бронза

демонстрирует очень хорошие прочностные характеристики при относительно легкой обработке.Высоколегированные бронзы также легко закаляются. Они характеризуются хорошими антифрикционными свойствами и высокой устойчивостью к коррозии и высоким температурам.

Мы продаем изделия из бронзы по всей Нижней Силезии, особенно Легница , Вроцлав и Познань .

Наша компания предлагает бронзы в виде:

Алюминий - - алюминий технической чистоты.В нем содержится много примесей, количество которых во многом зависит от способа приготовления. В процессе электролитического рафинирования получается алюминий с содержанием Al 99,95–99,955%. В результате электролиза оксида алюминия получаем металлургический алюминий в расплавленном криолите, содержащий 99,0-99,8% Al.

Алюминиевый склад Вроцлав, Легница, Познань

Мы торгуем алюминиевыми изделиями по всей Нижней Силезии, уделяя особое внимание следующим городам: алюминиевые изделия Легница , алюминиевые изделия Познань и Вроцлав .

Предлагаем такие алюминиевые изделия как:

  • круглые прутки
  • плоские стержни
  • листов

Изделия из алюминия

Предлагаем изделия из алюминия , характеризующиеся высокой технической чистотой в диапазоне 99,95 - 99,955% Al. У нас также есть продукты, полученные в результате электролиза оксида алюминия с содержанием Al 99,0 - 99,8% чистоты. Это дробеструйный алюминий , находящийся в расплавленном криолите, который характеризуется высокой прочностью и в то же время очень легким.Устойчивый ко многим погодным условиям алюминий используется в производстве окон и дверей. Алюминий — это экологический материал, который многократно перерабатывается и безопасен для окружающей среды.

Продажа алюминия

В некоторых случаях глина заменяет изделия из стали, поскольку она намного дешевле стали. Исключительная прочность материала очень полезна в технологических процессах. Материал пригоден для сварки и устойчив к растяжению.Обладает хорошими параметрами тепло- и электропроводности. Алюминий не поддается механической обработке и химически нестабилен.

Несмотря на долговечность, не используется в местах, подверженных механическим повреждениям. Эстетичный и универсальный материал – его можно использовать для многих строительных и дизайнерских проектов. Он устойчив к коррозии и используется в производстве технических пленок.

Алюминий – материал, широко используемый в следующих отраслях промышленности: пищевой, химической, энергетической, автомобильной и многих других.Алюминиевые листы широко используются для изготовления вывесок, дорожных знаков, архитектурных кромок и в качестве элемента электрооборудования.

.

Температура плавления некоторых металлов, их сплавов и сталей в градусах Цельсия.

Температура плавления некоторых металлов и их сплавов и сталей в градусах Цельсия.

90 015-38.86
Металл Температура плавления
Латунь (Cu-69%, Zn 30%, Sn-1%) 900 - 940
Алюминий 660
Алюминиевые сплавы 463 - 671
Алюминиевая бронза 600 - 655
Сурьма 630
Берилл 1285
Медный берилл 865 - 955
Висмут 271.4
Латунь 1000 - 930
Кадмий 321
Серый чугун 1175 - 1290
Хром 1860
Кобальт 1495
Медь 1084
Мельхиор 1170 - 1240
Золото, 24К 1063
Хастеллой С 1320 - 1350
Инконель 1390 - 1425
Инколой 1390 - 1425
Иридий - Иридий 2450
Кованое железо 1482 - 1593
Чугун, серый чугун 1127 - 1204
Ковкий чугун 1149
Свинец 327,5
Магний 650
Магниевые сплавы 349 - 649
Марганец 1244
Марганцево-коричневый 865 - 890
Меркурий
Молибден 2620
Монель 1300 - 1350
Никель 1453
Ниобий (колумбий) 2470
Осм 3025
Палладий 1555
Люминофор 44
Платина 1770
Плутон 640
Калий 63.3
Красная латунь 990 - 1025
Рен 3186
Стержень 1965
Рутений 2482
Селен 217
Кремний 1411
Серебро, Монета 879
Чистое серебро 961
Серебро 92,5% + надбавка 893
Натрий 97.83
Углеродистая сталь 1425 - 1540
Нержавеющая сталь 1510
Тантал 2980
Трек 1750
Олово 232
Титан 1670
Вольфрам 3400
Уран 1132
Ванадий 1900
Желтая латунь 905 - 932
Цинк 419.5
Циркон 1854


.

Физические свойства металлов. Температура плавления и плотность металлов и сплавов

Температура плавления металлов, которая колеблется от низшей (-39°С для ртути) до высшей (3400°С для вольфрама), а также плотность твердых металлов при 20°С и плотность жидких металлов при температуры плавления приведены в таблице плавки цветных металлов .

Таблица 1. Выплавка цветных металлов

Атомный вес

Температура плавления t и , °С

Плотность ρ , г/см3

устойчивый при 20°С

редко в

т и

Алюминий

Вольфрам

Марганец

молибден

Циркон

Сварка и плавка цветных металлов

Сварка меди .Температура плавления металлической Cu почти в шесть раз выше температуры плавления стали, медь интенсивно поглощает и растворяет различные газы, образуя с кислородом оксиды. Оксид меди II с медью образует эвтектику, температура плавления которой (1064 °С) ниже, чем у меди (1083 °С). Когда жидкая медь затвердевает, эвтектика располагается по границам зерен, что делает медь хрупкой и склонной к растрескиванию. Поэтому основной задачей при сварке меди является защита ее от окисления и активное раскисление сварочной ванны.

Наиболее распространена газовая сварка меди кислородно-ацетиленовым пламенем с использованием горелок в 1,5...2 раза мощнее стальной сварочной горелки. Связующее — медные стержни, содержащие фосфор и кремний. Если толщина изделий больше 5...6 мм, их сначала нагревают до температуры 250...300°С. Сварочные флюсы представляют собой обожженную буру или смесь 70 % буры и 30 % борной кислоты. Повышают механические свойства и улучшают структуру наплавленного металла, медь после сварки проковывают при температуре ок.200...300°С. Затем его повторно нагревают до 500-550°С и охлаждают в воде. Медь также сваривают электродугой с электродами, в токе защитных газов, под слоем флюса, на конденсаторных машинах методом трения.

сварка латуни . Латунь представляет собой сплав меди и цинка (до 50%). Основным загрязнением в этом случае является испарение цинка, в результате чего шов теряет свои свойства, в нем появляются поры.Латунь, как и медь, в основном сваривают ацетиленовым окислительным пламенем, которое образует на поверхности ванны пленку тугоплавкого оксида цинка, ограничивающую дальнейшее прогорание и испарение цинка. Флюсы используются так же, как и для сварки меди. Они образуют на поверхности ванны шлаки, которые связывают оксиды цинка и затрудняют выход паров из сварочной ванны. Латунь также сваривают в защитных газах и на контактных машинах.

бронзовая сварка .В большинстве случаев бронза является литейным материалом, поэтому сварка

применяется при устранении дефектов или при ремонте. Наиболее часто используется сварка металлическим электродом. Связующее изготавливается из стержней того же состава, что и основной металл, а флюсы или покрытие электродов представляют собой соединения хлоридов и фторидов калия и натрия.

. Основными факторами, препятствующими сварке алюминия, являются его низкая температура плавления (658°С), высокая теплопроводность (примерно в 3 раза выше теплопроводности стали), образование тугоплавких оксидов алюминия, имеющих температуру плавления 2050°С. С, т.е. технология плавки цветных металлов , , такие как медь или бронза, не подходят для плавки алюминия.Кроме того, эти оксиды плохо реагируют как с кислотными, так и с основными флюсами и поэтому плохо удаляются из сварного шва.

Самый распространенный факел для газовой сварки алюминия с ацетиленом. В последние годы получили широкое распространение также сварка под флюсом и автоматическая дуговая сварка металлическими электродами в среде аргона. Для всех способов сварки, за исключением аргонодуговой, применяют флюсы или электродные покрытия, в состав которых входят соединения фтора и хлора, лития, калия, натрия и других элементов.Проволока или стержни того же состава, что и основной металл, используются в качестве связующего для всех способов сварки.

Алюминий хорошо сваривается электронным лучом в вакууме, на контактных машинах, электрошлаковым и другими способами.

Сварка алюминиевых сплавов . Алюминиевые сплавы с магнием и цинком свариваются без особых осложнений

, так же как и алюминий. Исключение составляет дюралюминий – алюминиево-медные сплавы.Эти сплавы термически упрочняются после закалки и последующего старения. При температуре плавления цветных металлов выше 350°С в них происходит снижение прочности, не восстанавливаемое термической обработкой. Поэтому при сварке дюралюминия в околошовной зоне прочность падает на 40...50 %. Если дюраль сваривают в защитных газах, то такое снижение можно восстановить термической обработкой до 80...90 % по отношению к прочности основного металла.

Сварка магниевых сплавов . При газовой сварке обязательно применяют фторидные флюсы, которые в отличие от хлоридных флюсов не вызывают коррозии сварных соединений. Дуговая сварка магниевых сплавов металлическими электродами из-за низкого качества сварных швов до сих пор не применялась. При сварке магниевых сплавов наблюдается значительное увеличение зерна на участках, близких к шву, и сильное развитие столбчатых кристаллов в шве.Поэтому предел прочности сварных соединений составляет 55...60 % предела прочности основного металла.

Таблица 2. Физические свойства промышленных цветных металлов

Недвижимость

М м и высокий

Атомный номер

Атомный вес

при температуре

20°С, кг/м² 3

Температура плавления, °С

Температура кипения, °С

Атомный диаметр, нм

Скрытая теплота плавления, кДж/кг

Скрытая теплота парообразования

Удельная теплоемкость при температуре 20°С, Дж/(кг .°С)

Удельная теплопроводность, 20°С, Вт/(м - °С)

Коэффициент линейного расширения при температуре 25°С, 10 6 - ° З - 1

Удельное электрическое сопротивление при температуре 20°С, мкОм - м

Модуль нормальной упругости, ГПа

Модуль сдвига, ГПа

Плавильный тигель

Неотъемлемой частью производства металла и металлических изделий является их использование в процессе производства тиглей для производства, плавки и переплава черных и цветных металлов.Тигли являются составной частью металлургического оборудования для литья различных металлов, сплавов и тому подобного.

Керамический тигель для плавки цветных металлов используется для плавки металлов (медь, бронза) с древних времен.

После кристаллизации убедитесь, что вещество достаточно чистое. Наиболее простым и эффективным методом выявления и определения меры чистоты вещества является определение его температуры плавления ( Т пл). Температура плавления – это диапазон температур, при котором твердое вещество становится жидким.Все чистые химические вещества имеют узкий температурный диапазон перехода из твердого состояния в жидкое. Этот диапазон температур для чистых веществ составляет максимум 1-2 o C. Использование температуры плавления в качестве меры чистоты вещества основано на том, что наличие примесей (1) снижает температуру плавления и ( 2) расширяет диапазон температур плавления. Например, чистый образец бензойной кислоты плавится в интервале 120-122°С, а слабозагрязненный образец плавится при 114-119°С.

Использование температуры плавления для идентификации, конечно, сопряжено с большой неопределенностью, поскольку существует несколько миллионов органических соединений, и многие из них неизбежно совпадают с их точками плавления. Однако, во-первых, Т мкл вещества, полученного в синтезе, почти всегда отличается от Т мкл исходных соединений. Во-вторых, можно использовать метод «определения точки плавления смешанного образца». Если Т пл смеси равных количеств испытуемого вещества и известного образца не отличаются от Т пл последнего, то оба образца представляют собой одно и то же вещество.

МЕТОД ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРЫ ПЛАВЛЕНИЯ . Тщательно растереть испытуемое вещество в мелкий порошок. Капилляр заполняют веществом (высотой 3-5 мм; капилляр должен быть тонкостенным, запаянным с одной стороны, внутренним диаметром 0,8-1 мм и высотой 3-4 см). Для этого осторожно вдавливают открытый конец капилляра в порошок вещества и периодически постукивают его запаянным концом о поверхность стола 5-10 раз. Для полного вытеснения порошка к запаянному концу капилляра его насыпают в вертикальную стеклянную трубку (длиной 30-40 см и диаметром 0,5-1 см) на твердой поверхности.Вставьте капилляр в металлический патрон, прикрепленный к наконечнику термометра (рис. 3.5), и поместите термометр с патроном в прибор для определения температуры плавления.

В приборе термометр с капиллярами нагревается электрической катушкой, напряжение на которую подается через трансформатор, а скорость нагрева зависит от приложенного напряжения. Сначала аппарат нагревают со скоростью 4-6°С в минуту и ​​на 10°С, а затем ожидаемый Т пл нагревают со скоростью 1-2°С в минуту.За температуру плавления принимают расстояние от размягчения кристаллов (смачивания вещества) до полного их плавления.

Полученные данные заносятся в лабораторный журнал.

    1. Перегонка

Дистилляция является важным и широко используемым методом очистки органических жидкостей и разделения жидких смесей. Этот метод включает кипячение и испарение жидкости, а затем конденсацию паров в дистиллят. Разделение двух жидкостей, имеющих разность температур кипения 50-70°С и более, можно осуществить простой перегонкой.Если разница меньше, необходимо применять фракционную перегонку в более сложном аппарате. Некоторые жидкости с высокой температурой кипения разлагаются при перегонке. Однако при падении давления температура кипения падает, что позволяет перегонять высококипящие жидкости без разложения в вакууме.

При котором кристаллическая решетка металла разрушается и переходит из твердого состояния в жидкое.

Температура плавления металлов - показатель температуры нагретого металла, при которой начинается процесс (плавление).Сам процесс противоположен кристаллизации и неразрывно с ней связан. Расплавить металл? Он должен быть нагрет внешним источником, нагрет до точки плавления, а затем продолжать обеспечивать тепло для преодоления энергии фазового перехода. Дело в том, что значение температуры плавления металлов само по себе указывает на температуру, при которой материал будет находиться в фазовом равновесии на границе жидкость-твердое тело. При этой температуре чистый металл может находиться как в твердом, так и в жидком состоянии одновременно.Для осуществления процесса плавления необходимо перегреть металл немного выше равновесной температуры, чтобы обеспечить положительный термодинамический потенциал. Усильте процесс.

Температура плавления металлов постоянна только для чистых веществ. Наличие примесей будет смещать равновесный потенциал в ту или иную сторону. Это связано с тем, что металл с примесями образует другую кристаллическую решетку, и силы взаимодействия атомов в них будут отличаться от таковых в чистых материалах.В зависимости от температуры плавления металлы делят на легкоплавкие (до 600°С, например галлий, ртуть), среднеплавкие (600-1600°С, медь, алюминий) и тугоплавкие (>1600°С, вольфрам, молибден).

В современном мире чистые металлы редко используются из-за их ограниченных физических свойств. В промышленности давно и плотно используются различные сочетания металлов - сплавов, разновидностей и свойств которых гораздо больше. Температура плавления металлов, из которых состоят различные сплавы, также будет отличаться от точки плавления их сплава.Различные концентрации веществ определяют порядок их плавления или кристаллизации. Однако существуют равновесные концентрации, при которых металлы, входящие в состав сплава, затвердевают или плавятся одновременно, т. е. ведут себя как однородный материал. Такие сплавы называются эвтектическими.

Знание температуры плавления очень важно при работе с металлом, это значение необходимо как на производстве, для расчета параметров сплава, так и при эксплуатации металлических изделий, когда изменяется температура фазового перехода материала, из которого изготовлено изделие делается решает.ограничения в его использовании. Для удобства эти данные сведены в единую плавку металлов — суммарный результат физических характеристик различных металлов. Аналогичные таблицы есть и для сплавов. Температура плавления металлов также зависит от давления, поэтому данные в таблице приведены для конкретного значения давления (обычно это нормальные условия, когда давление составляет 101,325 кПа). Чем выше давление, тем выше температура плавления, и наоборот.

Одним из основных направлений в металлургической промышленности является литье металлов и их сплавов в связи с дешевизной и относительной простотой процесса.Вы можете отливать формы любого контура различных размеров, от маленьких до больших; подходит как для массового производства, так и для индивидуального производства.

Литье является одним из древнейших направлений металлообработки и берет свое начало примерно в бронзовом веке: 7-3 тысячелетия до н.э. мне. С тех пор было открыто много материалов, что привело к технологическому прогрессу и повышению требований в литейной промышленности.

В настоящее время существует множество направлений и видов литья, отличающихся технологическим процессом.Неизменным остается одно – физическое свойство металлов переходить из твердого состояния в жидкое, и важно знать, при какой температуре начинают плавиться разные виды металлов и их сплавов.

процесс плавки металла

Этот процесс относится к переходу вещества из твердого состояния в жидкое. После достижения температуры плавления металл может быть как твердым, так и жидким, дальнейший рост приведет к полному жидкостному переходу материала.

То же самое происходит и при затвердевании - как только будет достигнута точка плавления, вещество начнет переходить из жидкого состояния в твердое, а температура не изменится до полной кристаллизации.

При этом следует помнить, что это правило распространяется только на голое железо. Сплавы не имеют четкого температурного предела и совершают переходы состояний в определенном диапазоне:

  1. Солидус - Температурная линия, при которой наиболее легкоплавкий компонент сплава начинает плавиться.
  2. Ликвидус – это конечная температура плавления всех компонентов, ниже которой начинают появляться первые кристаллы сплава.

Точка плавления таких веществ не может быть точно измерена, точка перехода состояния указывает числовой диапазон.

В зависимости от температуры, при которой начинается плавление металлов, их принято делить на:

  • Плавкий до 600°С. К ним относятся цинк, свинец и другие.
  • Среднеплавкий, до 1600°С.Наиболее распространены сплавы и металлы, такие как золото, серебро, медь, железо, алюминий.
  • Огнеупорный материал, температура выше 1600°С. Титан, молибден, вольфрам, хром.

Существует также точка кипения — точка, при которой расплавленный металл начинает выделяться газом. Он очень теплый, обычно в 2 раза выше температуры плавления.

Влияние давления

Температура плавления и равная ему температура замерзания зависят от давления, которое увеличивается с ростом давления.Это связано с тем, что при увеличении давления атомы сближаются друг с другом и должны быть отодвинуты, чтобы разрушить кристаллическую решетку. Для высокого кровяного давления требуется больше энергии теплового движения, и соответствующая температура плавления увеличивается.

Существуют исключения, когда температура, необходимая для сжижения, снижается с увеличением давления. К таким веществам относятся лед, висмут, германий и сурьма.

Таблица температуры плавления

Для всех, кто работает в сталелитейной промышленности, будь то сварщик, литейщик, сталевар или ювелир, важно знать, при каких температурах плавятся материалы, с которыми они работают.В таблице ниже приведены температуры плавления наиболее распространенных веществ.

Таблица температур плавления металлов и сплавов

Имя Т.пл, °С
Алюминий 660,4
Медь 1084,5
Олово 231,9
Цинк 419,5
Вольфрам 3420
Никель 1455
Серебро 960
Золото 1064,4
Платина 1768
Титан 1668
Дюралюминий 650
Углеродистая сталь 11:00-15:00
11:10-14:00
Железо 1539
Меркурий -38.9
Мельхиор 1170
Циркон 3530
Кремний 1414
Нихром 1400
Висмут 271,4
немецкий 938,2
банка 13:00-15:00
Коричневый 930-1140
Кобальт 1494
Калий 63
Натрий 93,8
Латунь 1000
Магний 650
Марганец 1246
Хром 2130
молибден 2890
Свинец 327,4
Берилл 1287
, чтобы выиграть 3150
Фехраль 1460
Сурьма 630,6
Карбид титана 3150
карбид циркония 3530
Гал 29,76

Помимо плавильного стола есть много других вспомогательных материалов.Например, ответ на вопрос, какова температура кипения железа, дан в таблице кипящих веществ. Помимо кипения, металлы обладают рядом других физических свойств, таких как прочность.

Помимо возможности перехода из твердого состояния в жидкое, одним из важных свойств материала является его прочность - возможность твердого сопротивления растрескиванию и необратимым изменениям формы. Основным показателем прочности является сопротивление в результате разрушения предварительно отожженной заготовки.Понятие прочности не применимо к ртути, поскольку она находится в жидком состоянии. Прочность определяют в МПа - МегаПаскалях.

Группы прочности металла следующие:

  • Хрупкий. Их сопротивление не превышает 50 МПа. К ним относятся олово, свинец, мягкие щелочные металлы
  • Стабильный, 50-500 МПа. Медь, алюминий, железо, титан. Материалы этой группы являются основой многих конструкционных сплавов.
  • Высокая прочность, свыше 500 МПа. Например, молибден и .

Таблица прочности металла

Самые распространенные ноги в повседневной жизни

Как видно из таблицы, температуры плавления элементов значительно различаются, даже для материалов, распространенных в быту.

Ну и минимальная температура.У ртути температура плавления -38,9°С, так что она уже жидкая при комнатной температуре. Этим и объясняется тот факт, что бытовые термометры имеют более низкий показатель -39 градусов Цельсия: ниже этого показателя ртуть становится твердой.

Наиболее часто используемые в бытовом применении припои содержат значительный процент олова, имеющего температуру плавления 231,9°С, поэтому большинство припоев плавится при рабочей температуре паяльника 250-400°С.

Кроме того, существуют легкоплавкие припои с более низкой температурой плавления, до 30°С, и применяются, когда опасен перегрев припаиваемых материалов. Для этих целей применяют припой с висмутом, а плавление этих материалов находится в пределах 29,7 - 120°С.

Температура плавления высокоуглеродистых материалов колеблется от 1100 до 1500°С в зависимости от легирующих элементов.

Температуры плавления металлов и их сплавов лежат в очень широком диапазоне температур, от очень низких температур (ртутный) до нескольких тысяч градусов. Знание этих показателей, как и других физических свойств, очень важно для людей, работающих в металлургической промышленности. Например, знание температуры плавления золота и других металлов пригодится ювелирам, литейщикам и сталелитейщикам.

Каждый металл и сплав имеет свой уникальный набор физических и химических свойств, не последним из которых является температура плавления.Сам процесс означает переход тела из одного физического состояния в другое, в данном случае из кристаллического твердого состояния в жидкое. Чтобы расплавить металл, необходимо приложить к нему тепло, пока не будет достигнута температура плавления. При нем он еще может оставаться твердым, но при дальнейшем воздействии и повышении температуры металл начинает плавиться. Если температуру понизить, то есть отвести некоторое количество тепла, элемент затвердеет.

Самая высокая температура плавления среди металлов принадлежит вольфраму : она составляет 3422 °С, самая низкая - у ртути: элемент плавится при - 39 °С.Как правило, точное значение для сплавов определить не удается: оно может существенно варьироваться в зависимости от процентного содержания компонентов. Обычно они записываются в виде диапазона чисел.

Как это происходит?

Все металлы плавятся примерно одинаково - при внешнем или внутреннем нагреве. Первый проходит в термической печи, второй при переходе - нагрев электрическим сопротивлением или индукционный нагрев в высокочастотном электромагнитном поле.Оба варианта воздействуют на металл схожим образом.

С повышением температуры амплитуда тепловых колебаний молекул также увеличивается, появляются дефекты структурной сетки, которые выражаются в росте дислокаций, скачках атомов и других нарушениях. Это сопровождается разрывом межатомных связей и требует определенного количества энергии. При этом на поверхности тела образуется квазижидкий слой. Период разрушения сети и накопления дефектов называется плавлением.

В зависимости от температуры плавления металлы делятся на:

В зависимости от температуры плавления выбирают и плавильный аппарат. Чем выше оценка, тем сильнее она должна быть. Вы можете проверить температуру необходимого элемента в таблице.

Другим важным значением является температура кипения. Это значение, при котором жидкость начинает кипеть, оно соответствует температуре насыщенного пара, образующегося над плоской поверхностью кипящей жидкости. Обычно она почти в два раза выше температуры плавления.

Оба значения обычно указываются при нормальном давлении. Между собой прямо пропорциональны .

  1. Давление увеличивается - количество расплава увеличивается.
  2. Давление падает - количество плавления уменьшается.

Таблица металлов и легкоплавких сплавов (до 600°С)

Таблица среднеплавких металлов и сплавов (от 600°С до 1600°С)

.

Сплав для печати - Материал DB - RoHS

Сплав для печати - сплав свинца с оловом и сурьмой, используемый в различных соотношениях компонентов для отливки шрифтов и других наборных элементов. Можно выделить следующие сплавы:

    купель сплав
  • - для литья купели для ручного складывания;
  • стопор выравнивания - для отливки всех видов выравнивания;
  • линомонотипный сплав
  • , также известный как универсальный сплав - применяется как для литья линейных типов в линейных папках (линотипах), так и типовых типов в монотипных литейных машинах;
  • Сплав монотипный
  • - для литья наборных, а также заправок, линеек, орнаментов, титров и крупных букв.
90 018 Свинец (Pb) 90 021%
сплав Сурьма (Sb)
%
Олово (Sn)
%
Всего допустимых загрязняющих веществ
(Cu, Ni, Al, Zn, Fe)
%
Температура плавления
°С
Твердость по Бринеллю
HB
обоснование 12,0–18,0 1,8–2,8 остаток 0,35-0,40 250-300 16–19
линотип 12,0–13,0 5,0–6,0 остаток 0,35 245–255 21-22
монотип 14,5–15,5 5,5–6,5 остаток 0,35 255–265 25–26
шрифт 19,5–26,0 6,5–7,5 остаток 0,45 300–340 27-32
по PN-78/H-87202

Полиграфический сплав применялся для изготовления подавляющего большинства наборных элементов, только шрифты крупными градациями (т.н.плакатные шрифты) изготавливались из твердых пород дерева, а позже и из пластика, а линии (особенно тонкие), как узкие и длинные элементы, а потому механически неустойчивые, изготавливались из латуни.

См. также

.

Медь, свойства, медные сплавы, применение

Опубликовано dobrykurstaxi.pl Сен 12, 2021 в Другое | Комментарии к записи Медь, свойства, медные сплавы, использование

отключены

Медь – прекрасный металл, который благодаря своим преимуществам используется в различных отраслях промышленности. Он также является важнейшим компонентом живых организмов, обладает бактерицидными и вирулицидными свойствами, очищает воду, выступает катализатором выработки ферментов и других необходимых в организме продуктов.Все большую популярность приобретают медные сосуды, в которых хранится питьевая вода и медные украшения, регенерирующие через кожу на мягких тканях и суставах.

Медь – металл характерного красного цвета, температура плавления 1083 град С, плотность 8,96 г/см3. Его атомный номер 29. Как пластичный металл, он обрабатывается в холодном и горячем состоянии при температуре 650-800 градусов С. Медь является диамагнетиком - не обладает магнитными свойствами.Характеристики меди:

  • высокая теплопроводность
  • высокая электропроводность
  • коррозионная стойкость

Сплав меди - сплав меди с другим металлом, количество которого в сплаве составляет до 2%. Обычно это: серебро, марганец, теллур, кадмий, олово, хром или мышьяк. Исключение составляют сплавы серебра и золота, доля которых выше и составляет около 10%. Серебряная медь используется для обмоток электродвигателей, сварочных электродов. Мышьяковая медь - как элементы аппарата.

Медь применяется в промышленности как в чистом виде, так и в сплавах с другими металлами. Медные сплавы делятся на сплавы для литья и для обработки пластических масс.

Популярные медные сплавы

Латунь

Содержит цинк (до 40%), возможны другие ингредиенты.

Бронза

Содержит олово и незначительное количество других металлов

Медно-никелевый сплав

Никель менее 2%. Этот сплав устойчив к коррозии и истиранию.Из него делают монеты.

Спиж

Содержит 11 % олова, 2–7 % цинка, 2–6 % свинца

Медные резистивные сплавы

Это сплавы никеля, цинка, марганца, алюминия и железа. Их особенностью является удельное сопротивление – высокое электрическое сопротивление и низкий термический коэффициент. Благодаря этим свойствам из таких сплавов можно изготавливать пускатели и резисторы.

Использование чистой меди

  • электротехника (кабели и провода)
  • Химическая и энергетическая промышленность (теплообменники, химические аппараты, охладители)
  • строительство (сантехника, центральное отопление, водопровод)

Следующий процесс контактной сварки дает:

  • вспомогательные электроды
  • дисковые электроды
  • электроды специальные, с вольфрамом, молибденом
  • Мосты
  • и кабели
  • изолирующие элементы

Сырьем для производства являются прутки и полосовой прокат из медных сплавов, обладающих высокой температурой размягчения, высокой токо- и теплопроводностью.Медь в больших количествах используется в производстве гальванических покрытий, защищающих сталь. Медь можно повторно использовать и переплавлять много раз. Это не умаляет его полезности.

Это печати. Они используются в качестве герметиков для систем кондиционирования и сантехники. Они также используются в контакте с пищевыми продуктами. При выборе уплотнительного кольца даются два размера: внутренний диаметр и толщина. Могут работать при температуре от -60 до +200 градусов С.

.

NOM - ЛЕКЦИЯ - Предупреждение: TT: неопределенная функция: 32 Предупреждение: TT: неопределенная функция: 32 Предупреждение: TT:

ОПРЕДЕЛЕНИЯ - НАУКА МАТЕРИАЛОВ

ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ

Диаграммы баланса железо-углерод:

Стабильное железо - графит

Железо метастабильное - цементит

Ледебурит - эвтектическая смесь аустенита и цементита,

содержащая 4,30% С, стабильная в интервале от 727 до 1148 °С

Ледебурит измененный - смесь перлита и цементита,

в результате превращение аустенита из ледебурита в перлит,

устойчивый ниже температуры 727°С

Перлит - эвтектоидная смесь феррита и цементита, содержащая

0,77% С, встречающаяся ниже 727°С

α феррит - это твердый предельный раствор углерода в железе Feα с

максимальная растворимость углерода 0,0218 при температуре 727 ºC.

Твердость феррита варьируется от 70 до 90 HB.

Аустенит (GAMMA) представляет собой твердый предел твердого углерода в железе Fe

(GAMMA) с максимальной растворимостью углерода 2,11 при

при 1148 ºC. Мягкая и пластичная фаза. Возникает при температуре

выше 727 ºC.

Цементит Fe3C - это интерметаллидная фаза (карбид железа).

Содержание углерода в цементите 6,67%. Он твердый и хрупкий

(твердость 750 HB).Он отделяется от жидкости при охлаждении и тогда

мы обозначаем его как первичный I или он отделяется при охлаждении

от аустенита и тогда мы обозначаем его как II или

отделяется от феррита при охлаждении и тогда мы обозначаем его как III .

1

2

.

никель - Poczaj.onet.pl -

Никель, никол, Ni , химический элемент, относящийся к группе № 10 (никелевые металлы) (по старой номенклатуре относящийся к первой триаде (черные металлы) группы VIII В) периодической таблицы, атомный номер 28 , атомная масса 58,69. Он встречается в 5 стабильных изотопах. К наиболее важным минералам никеля относятся: миллерит NiS, никель NiAs, хлоантит NiAs 2 , герсдорфит NiAsS, железо-никелевый пирит [(Fe, Ni) 9 S 8 (магнитный пирит), брейтауптит NiSb, полидимит Ni 3 S 4 , NIS 2 , Nite Melonite 2 и Garnierite (Ni, Mg) 4 (OH) 4 SI 4 O 10 4H 2 O.Самородный никель встречается в метеоритах. Никелевые руды чаще всего перерабатывают в оксиды, затем восстанавливают углеродом, а полученный таким образом никель-сырец подвергают электролитическому рафинированию. Никель высокой чистоты (99,95%) получают методом Монда – используются необычные свойства очень токсичного карбонила никеля Ni(CO) 4 , который при температуре ок. (II) и очень чистый никель. Никель

— не очень твердый, ковкий металл с серебристо-белым (слегка желтоватым оттенком) блеском, имеет плотность 8,908 г/см 3 и температуру плавления 1453 °С.Он проявляет ферромагнитные свойства (ферромагнетизм) до температуры 363 °С. Не корродирует во влажном воздухе (никелирование), не подвержен действию щелочей, растворяется в минеральных кислотах (пассивируется в концентрированной азотной кислоте (V)). В соединениях встречается чаще всего в +II (наиболее прочный), +III и иногда (очень редко) +IV степени окисления.

Наиболее важные соединения: зелено-серый оксид никеля (II) NiO, яблочно-зеленый оксид никеля (II), Ni (OH) 2 , оксигидроксид никеля (III) NiO (OH), гидратированный черный оксид никеля (III) Ni 2 O 3 xH 2 O, сульфиды никеля (II) следующих формул NiS, NiS 2 (персульфид) и Ni 3 S 4 , золотисто-желтый безводный хлорид никеля (II) Ni4 9000 2 , зеленые соли гидратированные: гексагидрат никеля (II) хлорид NiCl 2 6H 2 O, гептгидрат никеля (II) сульфат (VI) NiSO 4 7H 2 O (купорос), гексагидрат никеля (II) сульфат (VI) ) NiSO 4 6H 2 O, гексагидрат аммония никеля (II) сульфат (VI), (NH 4 ) 2 SO 4 NiSO 0 5 Olog 2 Olog 2 00 06Hana Мора), гексагидрат нитрата никеля (II) (N) Ni (NO 3 ) 2 6H 2 O.Соли никеля (II) (ранее соли никеля) в водных растворах содержат зеленый комплекс [Ni (H 2 O) 6 ] 2+ .

Никель также образует многочисленные комплексные соединения с другими лигандами: карбонилами никеля (Ni(CO) 4 ), тетрацианониклатами (II), диметилглиоксиматом никеля (II), гексафторониклатами (III), гексафторониклатами (IV). Оксиды никеля образуют никель (III) с оксидами металлов 1 и 2 групп, например Ba 2 Ni 2 O 5 , и никелаты (IV), напримерK 2 NiO 3 , имеющие природу смешанных оксидов. Хотя никель и его соединения токсичны, этот элемент является микроэлементом (присутствует в активном центре некоторых ферментов, например, в уреазе).

Никель применяют в производстве сплавов (константан, никель, гиперник, новое серебро (альпака, аргентан), альнико, сплав монель, хромоникелин, манганин, мельхиор, медно-никелевый сплав, латунь, сплав К-42-Б и др. ) и в качестве катализатора и его соединения используются при никелировании и производстве никелевых аккумуляторов Эдисона.

Название элемента происходит от немецкого Kupfernickel - поддельная медь. Никель добывал барон А.Ф. Кронштедт в 1751 году.

.

Смотрите также